Homework 2 Clarification

Mason Rogers

April 18, 2018

I would like to clarify a few common problems with problems 2.3.1d and 2.3.5. Homework problem 2.3.1d states the following:

Problem. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{3}$. Prove or disprove that f is injective.
Many of the attempted solutions I read went more or less as follows:
Proof attempt. Suppose we have $x, y \in \mathbb{R}$ such that $f(x)=f(y)$, so $x^{3}=y^{3}$. Taking the cube root of both sides, we see $\sqrt[3]{x^{3}}=\sqrt[3]{y^{3}}$, and therefore $x=y$. Thus, f is injective.

The necessary implication to prove is correctly identified: we need to show that $x^{3}=$ $y^{3} \Longrightarrow x=y$. However, we cannot simply take the rube root of both sides, as doing so makes our argument circular. The symbol $\sqrt[n]{y}$ means 'choose x such that $x^{n}=y$ ', but it is not a priori clear that such a choice of x is uniquely or even canonically defined. In other words, it is not obvious from the definition of $\sqrt[n]{ }$ that $x \mapsto \sqrt[n]{x}$ even matches the definition of a function (see activity 3.5).

For instance, consider $n=2$. Given that our domain is $\mathbb{R}, \sqrt{-1}$ is not defined at all, and $\sqrt{1}= \pm 1$ is only defined up to a choice in sign. Of course, for square roots, we know that there is a canonical choice of sign: take the positive root. But to see why abusing the $\sqrt[n]{ }$ symbol gives us trouble, consider the following "proof" that $x \mapsto x^{2}$ is injective:
"Proof." Suppose we have $x, y \in \mathbb{R}$ such that $x^{2}=y^{2}$. Taking the square root of both sides, we see $\sqrt{y^{2}}=\sqrt{x^{2}}$, so $x=y$. Thus, $x \mapsto x^{2}$ is injective.

We see the flaw: $\sqrt{ }$ is not a function since it gives two outputs for positive inputs. Equivalently, x^{2} maps two inputs to the same output, such as $x= \pm 1$. The fact that the same argument with $\sqrt[3]{ }$ gives the right answer is a coincidence, and if we want to perform operations like taking the cube root of both sides, we ought to make sure that we're not making a choice (i.e. sign) that is destroyed upon cubing. Otherwise, we would be able to find x and y such that $x^{3}=y^{3}$ and our choice for $\sqrt[3]{x^{3}}$ equals our choice for $\sqrt[3]{y^{3}}$, but $x \neq y$. To rephrase our analogy to $x \mapsto x^{2}$ in these terms, we have $(-1)^{2}=1^{2}$ and $\sqrt{(-1)^{2}}=\sqrt{1^{2}}$, but $1 \neq-1$.

Hopefully this clarifies why arguments like the one suggested above are circular: they assume that $\sqrt[3]{ }$ is well defined, but that assumption is basically the content of the statement that $x \mapsto x^{3}$ is injective. That aside, let us consider some noncircular proof strategies that $x \mapsto x^{3}$ is indeed injective should you wish to correct your solution.

- Try the contrapositive $x \neq y \Longrightarrow x^{3} \neq y^{3}$. (Hint: WLOG, let $y>x$ and write $y=x+c$ for some $c>0$.)
- Granted that the function $x^{3}-c$ can have at most 3 complex roots (we will prove this later by induction), write out 3 roots in terms of each other and show that exactly 1 is real. (Hint: You will not be able to write the roots explicitly. Look at Corollary 2.11.)
- Prove that $x \mapsto x^{3}$ is strictly increasing and proceed from there.

Exercise 2.3.5 seems to have caused people similar problems. Colloquially, the problem asks us to prove that we can define an inverse g to a bijective function $f: X \rightarrow Y$ and that g satisfies the definition of a function that we developed in activity 3.5. Several people wrote an argument akin to 'let $g=f^{-1}$, which is likely because I did not explain my intentions for the problem clearly. I intended for you to construct a function g (to do which you will have to use the injectivity and surjectivity of f) that has the listed properties (i.e. g is indeed f^{-1}). Of course, I could have given g the name f^{-1}, but the point is that we want to show that f^{-1} is well defined without assuming so upfront. As such, writing $g=f^{-1}$ just assumes what we are trying to prove.

If you are interested in correcting your solution to this problem, think of a function $g: Y \rightarrow X$ as a rule assigning exactly one element of x to every element of Y. Because f is bijective, f is injective and surjective. Use your mathematical gluing skills to figure out how to put the italicized words in this paragraph together precisely and prove what you want to prove.

