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This week, I’d like to focus on exercise 3.3.2 and unpack a few difficulties that people had
with this problem. I’ll begin with a bullet list of some common errors, then walk through
the process of thinking about how to solve the problem and writing a proper solution.

Problem. The following statements were proven for functions f : X → Y and g : Y → Z as
a part of the previous section’s exercises. Write their converses and prove or disprove those.

a. If f and g are injective functions, then g ◦ f is an injective function.

b. If f and g are surjective functions, then g ◦ f is a surjective function.

Moreover, consider the related statement ‘if f is injective and g is surjective, then g ◦ f is
bijective’. Prove or disprove it, then write its converse and prove or disprove that.

Common Errors

1. Writing the contrapositives of (a) and (b) instead of their converses and thus proving
the wrong things

2. Using imprecise language instead of definitions and thus falling short of a rigorous
argument, leading to error 3

3. Insisting on proof rather than disproof and thus making logical leaps to prove false
statements

These mistakes are possible to make in almost any proof, so we will point out where they
pop up to learn from them.

Step 1: Correctly identify what needs to be proven or disproven.

The first step of writing any proof, regardless of strategy, is writing out exactly what we
need to prove or disprove. The problem asks us to prove the converses of statements (a) and
(b) rather than the statements themselves.1 Recall that for a statement of form ‘if P then
Q’, the converse is the statement ‘if Q then P ’. This is not equivalent the contrapositive ‘if

1If you never proved the statements themselves, it might be a good exercise. You can use the strategy
outlined in this document to guide you.
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not Q then not P ’; several examples are given in section 3.1 if you want to see more detail
as to why.

Taking the converses of statements (a) and (b) gives the following for functions f : X → Y
and g : Y → Z.

a’. (Converse of (a).) If g ◦ f is injective, then f and g are injective.

b’. (Converse of (b).) If g ◦ f is surjective, then f and g are surjective.

Note that we have now avoided common error 1.

Step 2: Use precise definitions to clarify what you need to show.

If we want to prove something involving injectivity and surjectivity, we had better use the
definitions of injectivity and surjectivity, which are mentioned in exercise 2.3.1 and 2.3.3
respectively. Otherwise, we will use vague language like “g ◦ f maps only one input to each
output” or “g ◦ f hits every element of the range”. Although such intuitions are helpful
for thinking about our argument, they are not rigorous and must be translated into precise
statements in our proof. We thus reformulate:

a’. (Precise, manipulable restatement of (a’).) If g(f(x1)) = g(f(x2)) implies that x1 = x2
for all x1, x2 ∈ X, then f(x1) = f(x2) implies that x1 = x2 and g(y1) = g(y2) implies
that y1 = y2 for all x1, x2 ∈ X and y1, y2 ∈ Y .

b’. (Precise, manipulable restatement of (b’).) If for any z ∈ Z there exists x ∈ X such
that g(f(x)) = z, then for any y ∈ Y there exists x ∈ X such that f(x) = y and for
any z ∈ Z there exists y ∈ Y such that f(y) = Z.

We are now in a position to avoid common error 2.

Step 3: Embark on the proof or disproof attempt.

Now that we know what we need to prove or disprove, we have decisions to make: Should we
try for a proof or a counterexample? If proof, should we proceed directly or by contrapositive?
Suppose we fail to find a counterexample to (a’) after thinking for a minute or two, so we
decide to try a direct proof.

Attempted proof of (a’). We need to show separately that f and g are injective, so we begin
with f . Suppose that f(x1) = f(x2) for some x1, x2 ∈ X. We thus have g(f(x1)) = g(f(x2)).

2

Since g ◦ f is injective, by the definition of injectivity, we have that x1 = x2. We conclude
that if f(x1) = f(x2) then x1 = x2, which is by definition the statement that f is injective.

Now we aim to show that g is injective. (Spoiler alert: This is where the proof attempt
is going to go off the rails, but watch carefully to see what temptations to avoid.) Suppose
g(y1) = g(y2) for some y1, y2 ∈ Y . We want to show that y1 = y2, but it seems impossible to
pull the y1 and y2 out from g. We thus switch to the contrapositive approach, whereby we

2Note that we can say this here because g is a bona-fide function, unlike 3
√

from last week.
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aim to prove that if g is not injective, g◦f cannot be injective. By the definition of injectivity
and the assumption that g is not injective, we can choose y1, y2 ∈ Y such that g(y1) = g(y2)
and y1 6= y2. It may be tempting to write y1 = f(x1) and y2 = f(x2), conclude by the
injectivity of f that x1 6= x2, and declare that g(f(x1)) = g(f(x2)) but x1 6= x2. However,
we are not guaranteed the existence of x1 and x2 such that f(x1) = y1 and f(x2) = y2; this
would require f to be surjective, which we cannot assume.

We’re stuck. . .

Step 4: Listen to your difficulties.

This is an insidious difference between computation-based math and proof-based math. In
calculus class, if you feel stuck, you can usually do anything remotely reasonable to get an
answer. If a step feels suspicious or unjustified, you can try it anyway and see whether it
allows you to proceed. But in Math 79SI, if your gut is telling you that you cannot prove
why g is injective without doing anything fishy, you need to listen to it rather than creatively
(by which I mean wrongly) sidestepping the problem.

We’ve proven that f is injective, but we are having trouble showing that g is injective.
We now realize that it might be a good idea to search for a counterexample, and from what
we learned in our proof attempt, we know that in our counterexample, f still has to be
injective. We thus can ponder, “how can an injective function be followed by a non-injective
function such that the composition is still injective?” Our attempt at proving the injectivity
of g also gives us another clue: We could finish the proof of (a’) if f were assumed to be
surjective, so we should look for a counterexample where f is not surjective.

Step 5: When looking for a counterexample, think small.

It may be tempting to try to think of examples of continuous functions f, g : R→ R because
these are the functions with which we are most familiar. But injectivity and surjectivity are
very bare-bones properties of functions, and thus it often suffices to work with bare-bones
examples of functions when looking for a counterexample. We suggest a counterexample in
Figure 1. Additionally, we have successfully avoided common error 3, and we are done with
the hard work.

Figure 1: Observe that g ◦ f is the bijection A 7→ α,B 7→ β, C 7→ γ, but g is not injective
and f is not surjective.
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We could then repeat this whole process with statement (b’):

Attempted proof of (b’). We need to show separately that f and g are surjective given the
fact that g ◦ f is surjective, and we begin with g. Choose z ∈ Z. By the definition of
surjectivity, we can choose x ∈ X such that g(f(x)) = z. Then y = f(x) ∈ Y satisfies
g(y) = z. We can therefore choose some y ∈ Y for all z ∈ Z such that g(y) = z, which by
definition is the statement that g is surjective.

We now aim to prove that f is surjective. (Spoiler alert: Not going to happen.) Choosing
y ∈ Y , let z = g(y). From the definition of surjectivity and the assumption that g ◦ f is
surjective, we can write g(y) = z = g(f(x)) for some x ∈ X. Here, it may be tempting to
conclude that y = f(x), but this would assume that g is injective, which is not necessarily
true.

We’re stuck again.

If we wanted to come up with a new counterexample, we could ask ourselves “How can
a surjective function follow a non-surjective function in such a way that the composition is
still surjective?” We also have the other clue that letting g be injective would allow us to
finish the proof of (b’), so we look for a counterexample where g is not injective.

Fortunately, Figure 1 is a counterexample to (b’) as well.
We conclude that statements (a’) and (b’) are both false, but we learned something from

trying to prove them: If g◦f is injective, f is injective, and if g◦f is surjective, g is surjective.
This helps us with the last part of the problem:

Problem (Last part). Consider the related statement ‘if f is injective and g is surjective,
then g ◦ f is bijective’. Prove or disprove it, then write its converse and prove or disprove
that.

I leave disproving the original statement as an exercise along with the reminder to think
small. The converse in question is ‘if g ◦ f is bijective then f is injective and g is surjective’.
I claim we’re already done:

Proof. Since g ◦ f is bijective, g ◦ f is both injective and surjective. We proved above that
g ◦ f being injective implies that f is injective and that g ◦ f being surjective implies that g
is surjective. We thus conclude that f is injective and g is surjective, as desired.

This time, we did not have to do any definitional unpacking since we already did all of
the heavy lifting earlier.

A final thought

This example is illustrative of what doing math should feel like. We try and often “fail”, but
it is precisely this “failure” that informs how we may succeed in our next attempt. It is easy
to write up a clean argument once you know the solution, and given that we are constantly
presented with thoroughly refined proofs in classes and textbooks, it is easy to feel like doing
math should be a linear process. However, this is seldom the case.
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In general, I think it is a good idea to think through the intuition and the formalism
in parallel. Drawing pictures and thinking non-rigorously might give you a strategy, and
attempting to formalize that strategy with precise, mathematical language will help you
realize how your strategy needs to be modified. At the end of the day, though, make sure
that your rigorous argument relies on appropriate definitions and previous results. Then you
will have both valuable intuition and a correct proof.
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