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2 Direct Proof

2.1 Background

Many mathematical questions cannot be answered by explicitly constructing an object or
finding a counterexample, and we would like to develop strategies to handle them. To do so,
we split statements into what they assume as input (their hypotheses or assumptions) and
what they state as a consequence (their conclusions). For instance, the statement ‘if x ≥ 0
is a real number, then x = y2 for some real number y’ has the hypothesis ‘x is a real number
greater than or equal to 0’ and the conclusion ‘x = y2 for some real number y’.

A statement of form ‘If P then Q’, where P is a list of hypotheses and Q a list of
conclusions, is called an implication. However, not all implications are immediately written
in if/then format. For instance, the statement ‘for all p in the set of prime numbers, there
exists a larger prime number q’ is an implication; we can put it in if/then format by writing
the equivalent1 statement ‘if p is a prime number, then there exists a larger prime number
q’. It is now clear that the hypothesis is that p is a prime, and the conclusion is that there
exists a larger prime q.

To prove such a statement, we must show that whenever the hypotheses hold, the con-
clusions must hold. The first strategy to do so is called direct proof. To prove something
directly, we begin with the the hypotheses, then state something relevant that they imply,
then something relevant that that implies, and so on, until we imply the conclusions them-
selves. Of course, we do not want to plug forward blindly; we let our intuition tell us what
exactly is relevant at each step. Shortly, we will do some examples to get comfortable with
this strategy.

Before we start, we make life easier by introducing a few bits of notation. Mathematicians
use double-bar letters to denote a few famous sets as follows:

• N: the natural numbers, {1, 2, 3, . . .}

• Z: the integers, {. . . ,−2,−1, 0, 1, 2, . . .}

• Q: the rational numbers, {a
b

: a, b ∈ Z, b 6= 0}
1Many proof-writing courses and textbooks begin with long discussions of implications, equivalences,

and other formal logic concepts in terms of truth tables. We exclude this discussion because it is neither
particularly interesting nor important moving forward, but if you are curious, then the further reading section
2.4 offers references.
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• R: the real numbers, for example π, 3, 0.57721566 . . ., etc.2

• C: the complex numbers, {a+ bi : a, b ∈ R, i2 = −1}

These, and phrases such as ‘choose x ∈ R’, are often seen in formal writing. One more
shorthand that is more commonly used for taking notes or discussing math is the implication
arrow =⇒ . For instance, we could rewrite ‘all rational numbers have eventually repeating
decimal expansions’ first as ‘if q is a rational number, then q has an eventually repeating
decimal expansion’, then as ‘q ∈ Q =⇒ q = 10−k (n+

∑∞
i=1 di10−i) for some n, k ∈ Z and

di ∈ {0, . . . , 9} satisfying di = di+N for some N ∈ N’.

2.2 Examples

We start with a simple example to indicate the utility, potential pitfalls, and shortcomings
of direct proof.

Proposition 2.1. Choose odd numbers a and b. Prove that their product ab is odd.

We provide two proofs, one cumbersome and one straightforward. In both proofs, we
avoid invoking facts (to be proven later) about prime factorizations of integers, which are
overkill for this statement.

Proof 1 (cumbersome). Let x be the units digit of a in base 10 and y be the units digit of b
in base 10. Then because a and b are odd, x, y ∈ {1, 3, 5, 7, 9}. Let z be the units digit of ab
in base 10. We can compute z in each of the 25 cases of (x, y), as summarized in table 1.

Table 1: Values of z for each case of (x, y)
x \ y 1 3 5 7 9

1 1 3 5 7 9
3 3 9 5 1 7
5 5 5 5 5 5
7 7 1 5 9 3
9 9 7 5 3 1

In every case, z ∈ {1, 3, 5, 7, 9}, so we conclude that ab is odd.

Proof 2 (straightforward). Since a and b are odd, we write a = 2k + 1 and b = 2` + 1 for
integers k and `. Then ab = (2k + 1)(2` + 1) = 2(2k` + k + `) + 1. Let n = 2k` + k + `,
which is an integer. Then ab = 2n+ 1, which is odd.

The proof by checking cases is indeed a valid proof, but it is inefficient. Starting with a
slightly more conceptual characterization of odd numbers as in the second argument above
leads to a quick and lucid proof. In general, case checking should only be used if no better

2It is difficult to define the real numbers using set builder notation, so we stick to giving a few examples.
A common way is to define the reals as a type of completion of the rational numbers, which is a topic in real
analysis (Math 115/171).
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or faster argument is apparent. This may be the case when there are a small number of
functionally distinct cases (e.g. even versus odd, but not different units digits within those
categories), or when a computer can check a large (but finite) space of possibilities. However,
a proof without checking cases is often more efficient and enlightening. The second proof of
Proposition 2.1 argues that the product of two numbers that are 1 more than a multiple of
2 is itself 1 more than a multiple of 2. This is a more useful than a collection of 25 different
statements about products of units digits.

In light of Proposition 2.1, we might want to know if the following related statement is
true.

Proposition 2.2. If the product ab of two natural numbers a and b is odd, then a and b
are both odd.

This is known as the converse of the statement in Proposition 2.1, which we will define
in the next section. To prove it directly would be difficult, as starting with ab = 2n + 1 for
some integer n does not seem to provide information about the parity of the factors a and b
of 2n + 1. You are welcome to try to think of another approach to proving this statement,
which we will revisit in the next section with a new technique.

We have now seen a good direct proof, a bad direct proof, and a related true statement
that is not easy to prove directly. In the previous section, we saw counterexamples generated
with varying degrees of efficiency and statements that were not amenable to proof by con-
struction or disproof by counterexample. This pattern will continue: every proof technique
that we will encounter is better adapted to some situations than others. For the remainder
of this section, we will gain practice with a few more challenging examples of direct proof
with the broad theme of finding roots to polynomials.

Before diving in, we need a few preliminary notions that will come up in the examples
we study. For integers r and r not both 0, we define the greatest common divisor gcd(r, s)
to be the largest positive integer which divides3 both r and s. If s 6= 0, we say that the
fraction r

s
is in lowest terms if gcd(r, s) = 1.

You may recognize these words and think of several associated facts, but it is important to
remember when facts do not follow immediately from the definitions at hand. For instance,
it is true (and not too difficult to prove) that any rational number q can be expressed as a
fraction in lowest terms, but this fact is not included in the definition of ‘lowest terms’. It is
also true that gcd(r, s) is a multiple of any common divisor of r and s; however, this is more
challenging to prove. If you try to think of a proof, you may think in terms of the prime
factorizations of r and s. However, the fundamental theorem of arithmetic, which states
that any natural number greater than 1 has a unique prime factorization, is itself somewhat
tricky to prove.4

To maintain focus on our discussion of polynomials, we will assume the fundamental
theorem of arithmetic for now, as well as the two non-obvious facts stated above. We also

3We say that m divides n if there exists an integer k such that n = km, i.e. m is a factor of n. Observe
that with this definition, any positive integer divides 0, so for s 6= 0, gcd(0, s) = |s|.

4The fundamental theorem of arithmetic asserts both the existence and uniqueness of prime factorizations
of natural numbers n ≥ 2. The existence part can be proven somewhat easily from the definition of a prime
number, but the uniqueness part takes work. If you are skeptical that the uniqueness of prime factorizations
is difficult to prove, try proving it!
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need one preliminary claim that we will take the time to prove via the fundamental theorem
of arithmetic.

Claim. Let a and b be integers such that b > 0 and gcd(a, b) = 1. Then for any n ∈ N,
gcd(an, b) = 1.

Proof of claim. We will prove the claim separately for the cases |a| ≤ 1 and |a| ≥ 2, which
clearly exhaust all integers.

We begin with the case a ∈ {−1, 0, 1}. Observe that gcd(r, s) = gcd(−r, s), since the
positive divisors of r and −r are the same. Since for all a ∈ {−1, 0, 1}, we have an = ±a. For
such a, we have that gcd(an, b) = gcd(a, b). By assumption, gcd(a, b) = 1, so we conclude
that gcd(an, b) = 1.

We now turn our attention to the case in which |a| ≥ 2, for which we will invoke the
fundamental theorem of arithmetic to write a uniquely as a product of primes ±pe11 ·pe22 · · · p

e`
` .

Since gcd(a, b) = 1, we see that none of the pi can divide b, as otherwise pi would be a common
divisor of a and b greater than 1. Now consider the unique prime factorization for an, which
is given by ±pne11 · pne22 · · · p

ne`
` . Still, none of the pi divides b, but any divisor d > 1 of an

must be some product of the pi since upon setting an = dd′ for an integer d′, the uniqueness
of the prime factorization of an forces any prime factor q of d to be some pi. Thus, no such
q can be a factor of b. We therefore have that gcd(an, b) = 1, proving the claim.

Claim in hand, we are ready to begin our discussion about polynomials. Polynomial
equations are ubiquitous in math, physics, economics, and more, so it is important to un-
derstand when and how they can be solved. Let us take a look at a few simple polynomials
with integer coefficients and their real roots (i.e. roots in R).

• x2 − 1 = 0 has the solutions x = ±1.

• x3 − 1 = 0 has the solution x = 1.

• x2 − 2 = 0 has the solutions x = ±
√

2 ≈ ±1.41421356237 . . .

• x3 − 2 = 0 has the solution x = 3
√

2 ≈ 1.25992104989 . . .

• x2 − 3 = 0 has the solutions x = ±
√

3 ≈ ±1.73205080757 . . .

• x2 − 4 = 0 has the solutions x = ±2.

• x3 − 4 = 0 has the solution x = 3
√

4 ≈ 1.58740105197 . . .

Already, a pattern is emerging: the square and cube roots of integers seem either to be
integers themselves or to have very long, apparently non-repeating decimal expansions, i.e.
are irrational. More precisely, it looks like the n-th roots of integers are either integers or
irrational numbers. To decide whether or not this is true, we need to formulate a precise
statement, then prove it. We thus propose the following.

Proposition 2.3. If q is a rational n-th root of an integer k, then q is an integer.
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Proof. Suppose q is a rational n-th root of some integer k, so q = a
b

for some a, b ∈ Z with
b > 0, and qn − k = 0. Without loss of generality,5 we assume that a

b
is a fraction in lowest

terms.
To show that q is an integer, we must show that b = 1, which we begin to do by

substituting q = a
b

into xn− k = 0. This gives
(
a
b

)n
= k, or after multiplying through by bn,

an = kbn. (1)

The right side is a multiple of b, so by the definition of greatest common divisor, we know
that gcd(kbn, b) ≥ b. Using equation (1), we then have gcd(an, b) ≥ b. We know that
gcd(an, b) = 1 regardless of a as proven in the above claim, so we have

1 = gcd(an, b) = gcd(kbn, b) ≥ b > 0.

From this, it follows that b = 1, so q = a. We conclude that if q is a rational n-th root of an
integer k, then q is necessarily an integer.

Let us recap our above argument. Our hypothesis was that q is a rational n-th root of
an integer k. This allowed us to substitute in a reduced fraction a

b
for q in the equation

qn − k = 0. We arrived at equation (1), then argued that for both sides of the equation to
be divisible by b, we must have b = 1. From this, we concluded that q must be an integer,
as we wanted.

The same argument may apply for a larger class of polynomials than xn− k, and looking
at a few more examples further supports the idea:

• x3 − 3x2 + x + 1 = 0 has the solutions x = 1, x = 1 −
√

2 ≈ −.41421356 . . ., and
x = 1 +

√
2 ≈ 2.41421356 . . .

• x4 − 4x3 − 6x2 + 28x − 16 = 0 has the solutions x = 2, x = 4, x = −1 +
√

3 ≈
.73205080 . . ., and x = −1−

√
3 ≈ −2.73205080 . . .

These polynomials seem to match the pattern we witnessed for n-th roots even though
they have more nonzero terms. In fact, the key commonality of these integer-coefficient
polynomials is actually that the leading coefficient is 1. We formulate this in a statement as
follows:

Proposition 2.4. If q is a rational root of a monic polynomial, i.e. a polynomial with leading
coefficient 1, with integer coefficients, then q is an integer.

Proof. Our argument will be almost identical to before. Let q be a rational root of p(x) =
xn +cn−1x

n−1 + . . .+c1x+c0, where c0, c1, . . . , cn−1 ∈ Z. We can write q = a
b
, where a, b ∈ Z,

b > 0, and gcd(a, b) = 1. Substituting q = a
b

into p(q), we have(a
b

)n
+ cn−1

(a
b

)n−1
+ . . .+ c1

a

b
+ c0 = 0.

5Mathematicians often use the phrase ‘without loss of generality’ or the informal abbreviation ‘WLOG’
to indicate a simplifying assumption that can always be made. In this proof, we are only intersted in the
fact that q is rational, not that q is expressed as a particular fraction c

d . Thus, we can assume that a
b is in

lowest terms without affecting the generality of the proof.
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Ultimately, we want to use properties of integers such as divisibility, so we multiply
through by bn 6= 0 to obtain the equivalent expression

an + cn−1a
n−1b+ . . .+ c1ab

n−1 + c0b
n = 0. (2)

Subtracting an from both sides and factoring out a b from the left side gives

b
(
cn−1a

n−1 + . . .+ c1ab
n−2 + c0b

n−1) = −an.

Invoking the claim from above to obtain gcd(an, b) = 1, we can see that

1 = gcd(an, b) = gcd(−an, b) = gcd
(
b(cn−1a

n−1 + . . .+ c0b
n−1), b

)
≥ b > 0.

It is clear then that b = 1, so q is an integer.

We applied the same method used to reach the same conclusion as in the previous propo-
sition, but under less restrictive hypotheses. Instead of assuming q to be a rational root
of a polynomial of form xn − k, we simply assumed q to be a rational root of some monic
polynomial with integer coefficients. We will use the above style of argument (albeit with a
slight twist) one more time to prove a significant theorem.

Theorem 2.5. (Rational Root Theorem) Let p(x) = cnx
n + cn−1x

n−1 + . . . + c1x + c0 be a
polynomial with integer coefficients such that neither c0 nor cn is zero, and let a

b
be a rational

root of p(x) expressed in lowest terms. Then b divides cn and a divides c0.

Proof. Using the same manipulations as used in the previous proposition to arrive at equation
(2), we have

cna
n + cn−1a

n−1b+ . . .+ c1ab
n−1 + c0b

n = 0. (3)

We will begin by proving that b divides cn by showing that cn
b

is an integer. Subtracting
cna

n from both sides and factoring out a b from the left side gives

b
(
cn−1a

n−1 + . . .+ c1ab
n−2 + c0b

n−1) = −cnan.

Since b 6= 0, we can divide both sides by b. Since the left side is a multiple of b, dividing
either side by b must still give an integer. We thus have that −cna

n

b
is an integer, and it

remains to show that cn
b

is an integer.
We will do so separately for the cases b = 1 and b ≥ 2. If b = 1, then clearly cn

b
= cn

is an integer. If b is greater than 1, then we can write b as a unique product of primes
qe11 · qe22 · · · q

e`
` by the fundamental theorem of arithmetic.6 Since gcd(−an, b) = 1 by the

same logic as previously used, we know that the unique prime factorization of −an cannot
contain any of the qi. However, we know that the unique prime factorization of the product

6We are proving a form of Euclid’s lemma, which states that if a prime p divides a product ab, then p
divides at least one of a and b. This is a key step in the conventional proof of the fundamental theorem of
arithmetic. It therefore may seem circular to use the fundamental theorem of arithmetic to prove it. However,
we will see proofs later in the course of the fundamental theorem of arithmetic that do not require proving
Euclid’s lemma. We use the ‘fundamental theorem’ approach both to take advantage of our intuition and to
minimize the number of facts we are assuming throughout this section, but a more sophisticated approach
could avoid introducing the fundamental theorem of arithmetic here.
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−cnan must contain b = qe11 · qe22 · · · q
e`
` . Therefore, we can conclude that the unique prime

factorization of cn contains qe11 ·qe22 · · · q
e`
` , and accordingly that cn is divisible by b as desired.

This exhausts all possibilities of b, so we conclude that b must divide cn always.
It remains to prove the second conclusion that a divides c0. The proof will go similarly

to that of the first conclusion. We return to equation (3) and subtract off c0b
n from both

sides and factor out an a from the left side to obtain

a
(
cna

n−1 + cn−1a
n−2b+ . . .+ c1b

n−1) = −c0bn.

Since neither c0 nor b is equal to zero, we know that neither side of the above expression
is zero, and consequently a 6= 0. We thus have that −c0bn is a nonzero multiple of a, and
accordingly that −c0b

n

a
is an integer. It remains to show that c0

a
is an integer. We would like

to use the same argument that we used to show that cn
b

is an integer, which we can do if
gcd(a,−bn) = 1. Indeed, proving that if gcd(a, b) = 1 then gcd(a,−bn) = 1 proceeds almost
identically to the proof that if gcd(a, b) = 1 then gcd(−an, b) = 1, which we have already
proven. Thus, we have that gcd(a,−bn) = 1, and can argue as before that c0

a
is an integer.

We conclude that b divides cn and that a divides c0, which concludes the proof of the
theorem.

The rational root theorem is quite powerful because it narrows down the search for
an integer-coefficient polynomial’s rational roots to a finite list. As an application of the
theorem, consider the following example.

Example 2.6. Find all rational roots of the polynomial p(x) = 4x3 − 3x2 + 8x+ 6.

Proof. The rational root theorem tells us that any rational root of p(x) must be in the
set {±6,±3,±2,±1,±3

2
,±1

2
,±3

4
,±1

4
}. Testing all possibilities yields the fact that p(x) has

exactly one rational root, which is precisely x = 3
4
.

In addition to answering questions about solvability of polynomial equations over the ra-
tionals, this also allows us to determine that some familiar roots of polynomials are irrational.
For instance, we have the following corollary:

Corollary 2.7. The golden ratio φ and
√

2 are irrational.

Proof. Since φ = 1+
√
5

2
, it is the positive root of f(x) = x2− x− 1 = 0. By the rational root

theorem, the only possible roots of f(x) are ±1. Direct substitution shows that neither is a
root, so any root of f(x) must be irrational. Since φ is a root, φ is irrational.

We likewise have that
√

2 is the positive root of g(x) = x2 − 2 = 0. By the rational root
theorem, the only possible roots of g(x) are ±1 and ±2. Direct substitution again shows
that none of these is a root, so we must have that

√
2 is irrational.

2.3 Exercises

1. A function f : X → Y between two sets X and Y is called injective if for any x1, x2 ∈ X
such that f(x1) = f(x2), we necessarily have x1 = x2. Determine whether or not the
following functions are injective. If so, prove your answer, and if not, give an example
of distinct x1 and x2 such that f(x1) = f(x2). Note: Injective functions are sometimes
referred to as ‘one-to-one’.
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(a) f : R→ R, f(x) = x

(b) f : R→ R, f(x) = sin(x)

(c) f : C→ R, f(z) = |z|2

(d) f : R→ R, f(x) = x3

(e) f : C→ C, f(z) = z3

(f) f : Z→ R, f(n) = cos(n)

(g) f : N→ R, f(n) = cos(n)

2. For f : R → R, suppose you are given a graph of f . Explain how you can intuitively
tell (but not prove) if f is injective just by looking at its graph. How does the definition
capture this intuition?

3. A function f : X → Y is called surjective if for every y ∈ Y , there exists some
x ∈ X such that f(x) = y. Determine whether or not each of the following functions
is surjective. If so, prove your answer, and if not, give an example of a y ∈ Y such
that there is no x ∈ X satisfying f(x) = y. Note: Surjective functions are sometimes
referred to as ‘onto’.

(a) f : R→ R, f(x) = x

(b) f : (−∞, 0) ∪ (0,∞)→ R, f(x) = 1
x

(c) f : R→ R, f(x) = x2

(d) f : C→ C, f(z) = z2

(e) f : R→ R, f(x) = 2x

(f) f : N→ N, f(n) = 2n

(g) f : N→ [−1, 1], f(n) = sin(n)

4. For f : R → R, suppose you are given a graph of f . Explain how you can intuitively
tell (though not prove) if f is surjective just by looking at its graph. How does the
definition capture this intuition?

5. A function f : X → Y is called bijective if it is injective and surjective. Prove that if
f : X → Y is a bijective function, then there exists a function g : Y → X such that
for all x ∈ X and y ∈ Y , g(f(x)) = x and f(g(y)) = y.

6. Prove that the function g in the previous problem is unique, so if f : X → Y is
bijective and g1 and g2 satisfy gi(f(x)) = x and f(gi(y)) = y for all x ∈ X, y ∈ Y ,
then g1(y) = g2(y) for all y ∈ Y . Hence, we call g the inverse of f , often denoted f−1.

7. For a bijective function f : R→ R, suppose you are given a graph of f . What will the
graph of f−1 look like?

8. Prove that compositions of injective functions are injective.7 In other words, if f :
X → Y and g : Y → Z are injective, prove that h : X → Z given by h = g ◦ f 8 is

7Note that although one can generally tell if certain types of functions are injective by looking at their
graphs (cf. exercise 4), the definition of injectivity is necessary to prove this useful statement.

8This is standard notation for composition of functions, where (f ◦ g)(x) = f(g(x)).
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injective.

9. Prove that compositions of surjective functions are surjective. Conclude that compo-
sitions of bijective functions are also bijective.

2.4 Further Reading

CPZ Chapter 2.4-2.5 More on implications from a logic standpoint.
CPZ Chapter 2.8-2.9 What logical equivalence actually means.
Wikipedia entry for the
Fundamental Theorem of
Algebra

The proofs may be difficult to follow closely, but
one can appreciate just how diverse the proofs
are as well as the intuitions that they confirm.
en.wikipedia.org/wiki/Fundamental theorem of algebra

Wikipedia entry for Weier-
strass Functions

Examples of everywhere continuous, nowhere differen-
tiable functions with animations to supply intuition.
en.wikipedia.org/wiki/Weierstrass function

2.5 Further Examples

We will now broaden our attention from polynomials with integer coefficients and their real
roots to polynomials with real coefficients and their complex roots. Let us take a look at a
few examples.

• z2 − 1 = 0 has solutions z = ±1.9

• z2 + 1 = 0 has solutions z = ±i.

• z2 + z + 1 = 0 has solutions z = −1
2
±
√
3
2
i.

• z3 + z2 + z − 3 = 0 has solutions z = 1 and z = −1±
√

2i.

• z4 + 5z2 + 1 = 0 has solutions z = ±i and z = ±2i.

Another pattern is emerging: It looks like whenever z = a + bi is a root, so is its complex
conjugate z̄ = a − bi. We would like to know whether or not this is always the case. As
before, we need to formulate a statement capturing precisely what we mean, then prove
it or disprove it. Such a statement could be ‘if a is a root of a polynomial p(z) with real
coefficients, then so is its complex conjugate ā’. We will prove this statement, first beginning
with a few facts about complex conjugates that will help us.

Proposition 2.8. Suppose z1 and z2 are complex numbers. Then z1 + z2 = z̄1 + z̄2 and
z1z2 = z̄1z̄2.

Proof. Both of these facts will follow from straightforward computations. Since z1 and z2
are complex numbers, we can write z1 = a + bi and z2 = c + di for some a, b, c, d ∈ R. We
have the following computations:

z1 + z2 = a+ bi+ c+ di = (a+ c) + (b+ d)i = (a+ c)− (b+ d)i

9It is conventional to let x denote a real variable and z denote a complex variable.
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z̄1 + z̄2 = a+ bi+ c+ di = a− bi+ c− di = (a+ c)− (b+ d)i

It is now apparent that both expressions are equal. We thus have that for any z1 and z2,
z1 + z2 = z̄1 + z̄2. We now turn to multiplication:

z1z2 = (a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i = (ac− bd)− (ad+ bc)i

z̄1z̄2 = a+ bi c+ di = (a− bi)(c− di) = (ac− bd)− (ad+ bc)i

Again, the two expressions are equal, concluding the proof.

The proposition also holds for more than two complex numbers. To prove this, we would
need a technique called induction, which we will develop a bit later in the course. Essentially,
we would want to formalize the ideas that

z1 + z2 + . . .+ zn−1 + zn = z1 + z2 + . . .+ zn−1 + z̄n = . . . = z̄1 + z̄2 + . . .+ zn−1 + z̄n

and
z1z2 · · · zn−1zn = z1z2 · · · zn−1z̄n = . . . = z̄1z̄1 · · · zn−1z̄n,

but for now, we will simply accept these facts as true.

Proposition 2.9. Let x be a real number. Then x̄ = x.

Proof. As a complex number, we have x = x+ 0i, so x̄ = x− 0i = x.

We are now ready to prove the main statement that we developed before.

Theorem 2.10. If a is a root of a polynomial p(z) = c0+c1z+. . .+cnz
n with real coefficients,

then so is ā.

Proof. We assume p(a) = 0 and want to show that p(ā) = 0. There are a number of ways to
proceed, but we will start by taking the complex conjugate of both sides of the expression
p(a) = 0 to obtain p(a) = 0̄. But 0̄ = 0, so p(a) = 0. We now substitute the coefficients of p
to obtain

c0 + c1a+ . . .+ cnan = 0.

Using the fact (essentially) proven above that the complex conjugate of any finite sum
equals the corresponding sum of the complex conjugates, we see that

c̄0 + c1a+ . . .+ cnan = 0.

Next, we apply the fact that the complex conjugate of the product of two complex numbers
is the same as the product of their complex conjugates to obtain that

c̄0 + c̄1ā+ . . .+ c̄nan = 0.

Similarly, we use the fact that the complex conjugate of the product of k complex numbers
equals the product of their complex conjugates to obtain ak = āk for each k ∈ {1, . . . , n}.
Hence,

c̄0 + c̄1ā+ . . .+ c̄nā
n = 0.
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Lastly, since the coefficients ci are assumed to be real, we know that for each j ∈
{0, 1, . . . , n}, c̄j = cj by the above proposition. Applying this fact yields

c0 + c1ā+ . . .+ cnā
n = 0.

This is precisely the statement that p(ā) = 0, concluding the proof.

Combined with the fundamental theorem of algebra10 which states that any n-th degree
polynomial p(z) with coefficients in C has (counted with multiplicity) n complex roots in C,
we will now show that Theorem 2.10 guarantees the existence of real roots to polynomials
of odd degree with real coefficients. We will prove in two ways the slightly easier version
where p(z) has n distinct roots, each time relying on different facts beyond the scope of this
course.

Corollary 2.11. Let p(z) be a polynomial of degree 2n+ 1 with real coefficients such that
all roots have multiplicity 1. Then p(z) has a real root.

Proof 1. The fundamental theorem of algebra states that, counted with multiplicity, p(z)
must have 2n + 1 roots. By assumption that each root has multiplicity 1, p(z) has 2n + 1
distinct roots in C. Because the coefficients of p(z) are assumed to be real, by Theorem
2.10, for every nonreal root a, ā is also a root. Moreover, it can be checked easily from the
definition of a complex conjugate that ā = a. Thus, nonreal roots come in pairs, so p(z)
must have an even number of nonreal roots. However, p(z) has an odd number of roots, so
at least one of the roots of p(z) must be real.

Proof 2. In this proof, we will invoke concepts from calculus without formally defining them
here, as the purpose is to communicate a proof based off a different idea.

We may assume that p is monic without loss of generality, for we may divide through by
the leading coefficient of p without changing its roots. Let x denote a real variable. As x tends
to ±∞, p(x) is dominated by its leading term x2n+1 in the sense that limx→±∞ p(x)/x2n+1 =
1. Because 2n+1 is odd, limx→+∞ x

2n+1 = +∞ and limx→−∞ x
2n+1 = −∞. We therefore have

that limx→+∞ p(x) = +∞ and limx→−∞ p(x) = −∞. By the intermediate value theorem,
p(x) must hit 0 for some x ∈ R, which is exactly the desired conclusion.

As we are often interested in solving polynomial equations in which the variable represents
a physical quantity like dollars, seconds, or meters, it is helpful to have such a tool to
assure the existence of a real solution in many cases. A classic example is that of cubic
polynomials with real coefficients. This is part of what makes mathematics exciting: it
provides a framework for approaching meaningful questions, as well as one for settling them
conclusively, often with the help of new concepts.

10The fundamental theorem of algebra requires surprisingly advanced machinery to prove despite the fact
that the theorem carries somewhat simple geometric intuition via the polar form of complex numbers reiθ.
There are many proofs of the theorem which take vastly different forms, as can be seen on the theorem’s
Wikipedia page.

11


