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3 Proof By Contrapositive

3.1 Background

In the last section, we introduced the concept of an implication as a statement of form ‘if P
then Q’, where P is a list of hypotheses and Q is a list of conclusions. We then discussed
proving implications directly by assuming that the hypotheses are true and deducing that
the conclusions must be true as well. However, we also saw a few instances in which this
approach did not work easily. Sometimes, it may seem tempting to manipulate the (failure
of the) conclusions and work towards the (failure of the) hypotheses. Over the next two
weeks, we will introduce two similar strategies that allow us to do this in a logically sound
way: proof by contrapositive and proof by contradiction. This week, we will study proof by
contrapositive, for which we assume that the conclusions of a statement are false and show
that its hypotheses must be false as well. Next week, we will study proof by contradiction,
for which we assume that the hypotheses of a statement hold but its conclusions do not and
show that an absurdity arises.

Given an implication ‘if P then Q’, we define the contrapositive statement to be ‘if not Q
then not P ’. Any implication is logically equivalent to its contrapositive,1 so proving either
proves both. Thus, if proving the original statement directly is difficult, we may try proving
its contrapositive instead.

We can think of this in two ways: (I) we take the contrapositive of the original statement
and prove it directly, or (II) we assume that the conclusion of the original statement is
false, then show that at least one hypothesis must be false as well. For instance, consider
Proposition 2.1, which states that if a and b are odd numbers, their product ab is odd. We
proved this directly in section 2.2, but we could also prove it by contrapositive by assuming
that a product of two integers a and b is even and proving that at least one of a and b is
even.

As a warning, while a statement (if P then Q) is equivalent to its contrapositive (if not
Q then not P ), it is not equivalent to its converse (if Q then P ) or its inverse (if not P then
not Q). For example, consider the statement for a real-coefficient polynomial p that if p has
odd degree, then p has a real root, a special case of which was proven in Corollary 2.11. The
converse of this statement is that if p has a real root then p must have odd degree, which is
clearly false.

1Why? Suppose P =⇒ Q is true and Q is false. If P were true then P =⇒ Q would fail, so P must
be false. Thus, if P =⇒ Q holds, so does its contrapositive. Repeating the same argument while switching
the roles of the contrapositive and the original completes the proof.
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It is common to make and prove biconditional statements that can be viewed as containing
both ‘forwards’ and ‘backwards’ implications. These are useful to prove the equivalence of
different sets of conditions, each of which may be easier to verify or proceed from in different
circumstances. Such statements are worded as ‘P if and only if Q’ and mean ‘if P then Q
and if Q then P ’, i.e. both P =⇒ Q and Q =⇒ P . Sometimes, they are abbreviated with
the bidirectional implication arrow ‘⇐⇒ ’ or the shorthand ‘iff’, as in ‘P ⇐⇒ Q’ or ‘P iff
Q’. For example, the statements ‘a triangle is equilateral if and only if all of its angles are
60◦’ and ‘a prime number p is a factor of ab if and only if p is a factor of a or p is a factor
of b’ are both true biconditional statements.

When confronted with biconditional statements, you must prove an implication and its
converse or inverse.2 In light of our warning not to mistake the converse or inverse for
the contrapositive when proving a statement by contrapositive, we make a similar warning
here. It is important not to prove a statement and its contrapositive when trying to prove
a biconditional statement, as this amounts to proving the same implication twice.

We conclude with a few related example statements and consider whether or not they
hold biconditionally. If 4ABC and 4A′B′C ′ are congruent (with A corresponding to A′, B
to B′, and C to C ′), the following properties hold:

• AB = A′B′, BC = B′C ′, CA = C ′A′ (SSS condition)

• AB = A′B′, BC = B′C ′,m(∠B) = m(∠B′) (SAS condition)

• m(∠A) = m(∠A′), AC = A′C ′,m(∠C) = m(∠C ′) (ASA condition)

• AB = A′B′, BC = B′C ′,m(∠C) = m(∠C ′) (SSA condition)

The contrapositives of these statements therefore also clearly hold; if any of the conditions
fails, the triangles are not congruent. It is also helpful to know which of those four conditions
are sufficient to deduce that 4ABC is congruent to 4A′B′C ′, i.e. which statements have
true converses. As you may remember from high school geometry, the SSS, SAS, and ASA
conditions imply congruence of the triangles, but the SSA condition does not. This is because
of an issue involving acute and obtuse angles, depicted in Figure 1.

These examples are helpful to keep in mind to remember that while statements are
equivalent to their contrapositives, they are not always biconditional.

3.2 Examples

Let us begin with some simple examples from earlier in the course to see when proof by
contrapositive might be convenient. Recall that in our discussion following Problem 1.2, we
mentioned that if a natural number n factors as ab, then at least one of the factors must be
at least

√
n. We will prove a slight generalization of this statement by contrapositive.

Proposition 3.1. If x, y, z ∈ R>0 satisfy z ≤ xy, then x ≥
√
z or y ≥

√
z.3

2Note that the converse and inverse of a statement are contrapositives of each other and therefore can be
substituted.

3The symbol R>0 is a common shorthand for the set of positive real numbers.
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Figure 1: Observe that by reflecting S1 about the horizontal axis, we can construct two
triangles which satisfy the SSA property but are not congruent.

Proof. Beginning with z ≤ xy does not provide a clear path to bounding x or y, so we attempt
a proof by contrapositive. The contrapositive of the original statement is ‘if x, y, z ∈ R>0

satisfy x <
√
z and y <

√
z, then z < xy’. Note that the inequalities involved are now strict

and all quantities are nonnegative, so we have

xy <
√
z ·
√
z = z,

as desired.

Another example we encountered in a previous week is Proposition 2.2. We revisit it
armed with our new technique of proof by contrapositive.

Proposition 3.2. If the product ab of two natural numbers a and b is odd, then a and b
are both odd.

Proof. As we already realized in the previous section, it is difficult to prove this statement
directly. However, the contrapositive statement ‘if a and b are natural numbers and at least
one of them is even, then ab is even’ is easily proven. Without loss of generality, let a be
even, so a = 2k for some natural number k. Then ab = 2kb, and because kb is an integer, ab
must be even.

Note that this proof along with the proof of Proposition 2.1 is also a proof of the bicon-
ditional statement ‘the product ab of natural numbers a and b is odd if and only if a and b
are both odd’. We offer one more example of a statement that is difficult to prove directly
but easy to prove by contrapositive.

Proposition 3.3. For n ∈ N, if n2 is odd then n is odd, and if n2 is even then n is even.

Proof. We will first prove that if n2 is odd then n is odd. If we were to prove this directly,
our assumption would give us that n2 = 2k + 1 for some integer k. However, it is not
straightforward to continue from here, as we cannot easily discern much about n =

√
2k + 1.

Instead, we aim to prove the contrapositive, which states that if n is even then n2 is even.
To do so, simply let n = 2k for some integer k and observe that n2 = 4k2, which is clearly
even.
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The other statement is similar; beginning with n2 = 2k results in the same problem as
before, as

√
2k is not readily simplified. We therefore turn to the contrapositive approach,

leaving us to prove that if n is odd then n2 is odd. Analogously to the first case, let n = 2k+1
for some integer k, and observe that n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1, which is clearly
odd.

We see that sometimes, even when a direct proof may seem impossible, a proof by
contrapositive falls out almost immediately. Of course, it usually takes more work to achieve
the proof by contrapositive, as in the next example.

Recall that in the lead-up to Proposition 1.2, in which we factored the fifth Fermat
number, we used a result without proof that if a number of form 2m + 1 is prime, then
m = 2n for some nonnegative integer n. We now prove this.

Proposition 3.4. If m is a natural number such that 2m + 1 > 2 is prime, then m = 2n for
some nonnegative integer n.

Proof. The direct approach would be to let p be a prime number of form 2m + 1 for m ∈ N,
then show that m = 2n for some nonnegative integer n. This seems rather difficult, though,
as we do not have an immediate strategy for taking a prime and generating information
about its form. To prove the contrapositive, we assume that m is not of form 2n and aim
to deduce that 2m + 1 is not prime. We do have a tool for going from information about a
number’s form and showing that the number is composite: factoring.

Suppose that m is not of form 2n for some nonnegative integer n. Since 1 = 20, m must
be a natural number greater than 1. By the existence of a prime factorization for m, we can
therefore write m = 2`(2k+ 1), where ` is a nonnegative integer and k ∈ N. Our goal is now
to show that 22`(2k+1) + 1 factors nontrivially. This will generalize the familiar factorization
x3 + 1 = (x+ 1)(x2 − x+ 1).

Observe that

2m + 1 = 22`(2k+1) + 1 =
(

22`
)2k+1

+ 1.

It may not be immediately apparent how to factor this expression, but letting x = 22` , we

have
(

22`
)(2k+1)

+ 1 = x2k+1 + 1. For any x ∈ R, this expression factors as

x2k+1 + 1 = (x+ 1)

(
2k∑
i=0

(−x)i

)
,

which can be proven by mathematical induction on k, a topic we will study in the coming
weeks. In the case at hand, we substitute 22` for x to obtain

2m + 1 =
(

22` + 1
)( 2k∑

i=0

(
−22`

)i)
.

Note that since the left side and the first factor on the right side are positive, the second
factor on the right side must also be positive, so all 3 terms are in N. All that remains to
check is that this factorization is nontrivial, i.e. that neither factor is 1. It suffices to check
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that one factor is neither 1 nor 2m + 1 itself.4 This is easy to verify, as 1 < 22` + 1 < 2m + 1
because m = 2`(2k + 1) for some k ≥ 1 by our hypothesis on m. Thus, we have found a
nontrivial factorization of 2m + 1, concluding the proof of the proposition.

While taking the contrapositive of the previous statement made the proof manageable, it
certainly did not allow the proof to fall out immediately. Over time, you will develop the skill
of discerning when a direct proof or a proof by contrapositive might be most appropriate. It
is a good rule of thumb to estimate whether the assumptions or conclusions of a statement
seem easier to manipulate, but if the approach you settle on fails, you can always try the
other.

We now consider a few more challenging examples which we have not encountered earlier
in the course. The first comes from calculus and characterizes local extrema of functions.

Proposition 3.5. Let f : R→ R be a differentiable function. If f achieves a local maximum
at x = a, then f ′(a) = 0.

Proof. The intuition for this statement seems to follow the line of a direct proof. Given a
plot of the graph of f , we identify local extrema by finding points where the tangent line
to the graph of f is horizontal. Thus, it makes sense that f ′ would vanish at those points.
However, the condition of achieving a local maximum is difficult to manipulate concretely,
so we instead prove the contrapositive.

For this problem, we will use the limit definition of the derivative without worrying too
much about formalities involving limits. Suppose that f ′(a) 6= 0; we aim to prove that f
does not achieve a local maximum at x = a. From the limit definition of the derivative, we
have

lim
h→0

f(a+ h)− f(a)

h
= lim

h→0

f(a)− f(a− h)

h
= c 6= 0.

First, suppose c > 0. Then for some h > 0 and all h′ satisfying 0 < h′ < h, we have that

f(a+ h′)− f(a)

h′
> 0,

and consequently that f(a + h′) > f(a). In particular, for arbitrarily small h > 0, we can
choose h′ < h such that f(a + h′) > f(a). Thus, f does not achieve a local maximum at
x = a.

If c < 0, we use a similar argument with the other expression we have for c. For some
h > 0 and all h′ satisfying 0 < h′ < h, we have that

f(a)− f(a− h′)
h′

< 0,

and consequently that f(a) < f(a − h′). Again, for arbitrarily small h > 0, we can choose
h′ < h such that f(a− h′) < f(a), so f does not achieve a local maximum at x = a.

4Why? Suppose n = ab for some a, b, n ∈ N. The statement ‘if a 6= n then b 6= 1’ is the contrapositive of
(and thus equivalent to) ‘if b = 1 then a = n’, which is true by the assumption that n = ab. Thus, if a is
neither 1 nor n, then neither a nor b is 1.
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A similar argument proves the case that the extremum in question is a local minimum.
In either case, the condition of having a local extremum at a point is more difficult to
manipulate than the condition of having nonzero derivative, hence why the contrapositive
approach is useful.

3.3 Exercises

1. Write the contrapositives of the following (true) statements:

(a) Choose q ∈ R. If q is a rational number, then q has an eventually repeating
decimal expansion.

(b) Choose x ∈ R. If x ≥ 0, then x = y2 for some real number y.

(c) For all p in the set of prime numbers, there exists a larger prime q.

2. The following statements were proven for functions f : X → Y and g : Y → Z as a
part of the previous section’s exercises. Write their converses and prove or disprove
those.

(a) If f and g are injective functions, then g ◦ f is an injective function.

(b) If f and g are surjective functions, then g ◦ f is a surjective function.

Moreover, consider the related statement ‘if f is injective and g is surjective, then g ◦f
is bijective’. Prove or disprove it, then write its converse and prove or disprove that.

3. Prove that if x, y, z ∈ R satisfy z = x+ y, then x ≥ z
2

or y ≥ z
2
.

4. Choose x, y ∈ R, and suppose that xy /∈ Q. Prove that x /∈ Q or y /∈ Q.

5. Write the converse to the statement proven in the previous exercise, and prove it or
disprove it.

6. Mathematicians call primes of form 2n − 1 Mersenne Primes after Marin Mersenne,
a French friar who studied them in the early 17th century. Mersenne primes are
important for their connection to perfect numbers (a concept in number theory) and
random number generation, among other reasons. Prove that if 2n − 1 is prime, then
n must be prime. (Hint: you may use without proof that xab − 1 = (xa − 1)(xb + x2b +
. . . + x(a−1)b) for any x ∈ R and any a, b ∈ N. We will be able to prove this later with
mathematical induction, but you may be able to see already why this may be true.)

7. Prove Proposition 3.8.

8. Look up and summarize a proof of the Steiner-Lehmus theorem. What is its broad
approach? Does it use trigonometry or algebra, or does it simply use elementary
geometry? Does it use the contrapositive or establish a contradiction?
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3.4 Further Reading

CPZ Chapter 3.3 Introduction to proof by contrapositive with simple exam-
ples.

CPZ Chapter 4 More advanced direct proofs and proofs by contrapositive
mixed together.

CPZ Chapter 2.6 More about biconditionals and converses if you are confused.
Sherri R. Gardner “A Vari-
ety of Proofs of the Steiner-
Lehmus Theorem”

The author discusses and classifies many clas-
sical proofs of the Steiner-Lehmus theorem.
dc.etsu.edu/cgi/viewcontent.cgi?article=2332&context=etd

Wikipedia entry for
Mersenne Primes

What Mersenne Primes are and why mathematicians care.
https://en.wikipedia.org/wiki/Mersenne prime

Wikipedia entry for Primal-
ity Tests

There are many different primality tests
with various efficiencies and sensitivities.
https://en.wikipedia.org/wiki/Primality test

3.5 Activity

Until the 19th century, many calculus textbooks featured ‘proofs’ of statements that are
incorrect. Notable examples include the statements that (I) any function can be represented
locally by a power series and (II) continuous functions of real numbers must be differentiable
outside a set of isolated points.

In the 19th century, Karl Weierstrass provided a famous family of examples of functions
that are continuous everywhere but differentiable nowhere, clearly disproving statement (II).
One example of Weierstrass’ functions is f(x) =

∑∞
n=0

1
2n

cos(13nπx).5 We will omit the
definitions of differentiability and continuity as well as a proof that f(x) has the desired
properties for now. But if you plot the first few terms of the series for f , you will see that
the graph of f features small but rapid oscillations, confirming our intuition for what an
everywhere continuous, nowhere differentiable function might look like.

A counterexample to statement (I) is given by

f(x) =

{
0 x ≤ 0

e−
1
x2 x > 0,

which is a useful function in many areas of math because of how smoothly and quickly it
decays near x = 0. We again omit the proof that this example contradicts statement (I),
but plotting f(x) indicates that it behaves very smoothly near 0, even though the behavior
on either side of 0 is very different. We will study these functions more in future exercises.

The reason that the false proofs had stood for so long had to do with an unclear notion
of a function, which was originally defined as an ‘analytic expression’, whatever that means.
Today, we will try to construct a better definition of ‘function’ that includes the above
examples and appropriately summarizes what our sense of a function is.

5The infinite sum must ‘converge’ at each x to make sense, a notion which you may recall from calculus
experience. We will introduce a definition of convergence in the coming weeks. For now, we will accept that
this sum converges. More information is available in the further reading section 2.4.
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Step 1 Everybody independently construct a list of as many objects that they think
should be counted as functions as possible.

Step 2 Everybody independently construct what they believe to be a mathematically
precise definition of a function that can handle all of their test cases.

Step 3 Volunteers share their definitions and test cases. If one student’s definition does
not handle another student’s test case, we all can discuss whether the definition needs to be
expanded or the test case rejected. Afterwards, we will reach a definition of function that
the class agrees on.

Step 4 Test the class definition of function against the following test cases:

• f : R→ R, f(x) = x2

• f : R→ R, f(x) = 27 sin(3x12) + 463x3 − 1

• f : R→ R, f(x) = 1 if x ∈ Q, f(x) = 0 otherwise

• f : N→ N, f(n) = [the index of the first appearance of n in π]

• f : {dog, cow, elephant} → {dog food, grass, plants}, f([animal]) = [food it eats]

Additionally, compare the class definition to the definition of a function f : X → Y as a
subset Af ⊂ X × Y such that every element of X is the first component of exactly one
ordered pair in Af .

3.6 Further Examples

We give another example of a proof by contrapositive from number theory. This result can
be stated and proven rather quickly using the language of modular arithmetic, which we are
not assuming but will explore in future exercises. Instead, we state it in terms of division
and remainders.

Proposition 3.6. If a natural number n leaves remainder 3 after dividing by 4, then n is
not a sum of two perfect squares.

Proof. We begin with a preliminary claim about what remainders perfect squares can leave
after dividing by 4.

Claim. For m ∈ N, m2 leaves remainder 0 or 1 after dividing by 4.

Proof of Claim. We split into the cases m is even and m is odd and proceed directly. Suppose
m is even, so m = 2k for some k ∈ Z. Then m2 = 4k2, which leaves remainder 0 after dividing
by 4. Now suppose m is odd, so m = 2k+1 for some k ∈ Z. Then m2 = 4(k2 +k)+1, which
leaves remainder 1 after dividing by 4. This covers all cases for m, so we are done.

Now we return to proving the contrapositive of the statement in the proposition. Suppose
that n can be written as k2 + `2 for some k, ` ∈ N. By the claim, k2 and `2 each leave
remainder 0 or 1 after dividing by 4, giving four cases: k2 = 4a, `2 = 4b, k2 = 4a+1, `2 = 4b,
k2 = 4a, `2 = 4b + 1, and k2 = 4a + 1, `2 = 4b + 1. In each respective case, the remainder
of n = k2 + `2 after dividing by 4 is 0, 1, 1, and 2. This exhausts all possible cases, so we
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conclude that if n leaves remainder 3 after dividing by 4, n cannot be written as the sum of
two squares.

This result is perhaps more exciting in light of several other results due to Euler. First, if
p is a prime which leaves remainder 1 after dividing by 4, then p necessarily can be written
as a sum of two perfect squares. Second, if a natural number n and factor a can be written
as a sum of two perfect squares, so can the quotient n

a
. These results, combined with the

technique of mathematical induction, the fundamental theorem of arithmetic, and the fact
that 2 = 12 + 12, yield the following theorem.

Theorem 3.7. Let n > 1 be a natural number, and let
∏k

i=1 p
ei
i be the unique prime

factorization of n. Then n can be written as a sum of two perfect squares if and only if none
of the pi leaves remainder 3 when dividing by 4.6

We offer one more famous historical example from geometry of a proof that is difficult by
contrapositive, but perhaps not even possible directly. As a warm-up, consider the following
statement, which you may have proven in a high school geometry class.

Proposition 3.8. Let 4ABC be an isosceles triangle with AB = AC. Then the angle
bisectors of ∠ABC and ∠ACB are congruent.

Informally, this follows from the symmetry of the triangle; you are welcome to work out
the details if you are up for a challenge. The converse to this statement, a useful tool for
proving that triangles are isosceles, is much more challenging to prove:

Theorem 3.9 (Steiner-Lehmus). Let4ABC be a triangle such that the bisectors of ∠ABC
and ∠ACB are congruent. Then 4ABC is isosceles with AB = AC.

A number of proofs (as well as an anthology and classification of them) are available in
the further reading section 3.4. There is still debate over whether a direct proof exists, as
most available proofs utilize either the contrapositive or the contradiction approach.

We now move on from discussing proof by contrapositive specifically and focus our atten-
tion on proving biconditional statements. We have already discussed the hypothetical utility
of being able to generate large primes quickly, and it is similarly useful to be able to check
quickly if large numbers are prime. One of the most crude (in that it is slow) but effective
(in that it definitively determines whether a number is prime) primality tests is known as
trial division.

Proposition 3.10. Choose n ∈ N such that n > 1. Then n is prime if and only if for all
m ∈ N such that 1 < m ≤

√
n, m does not divide n.

Proof. Let us unpack this statement before proving it. The phrase ‘if and only if’ signals to
us that we must prove two implications: that n being prime implies n has no divisors less
than or equal to

√
n other than 1, and that n having no divisors less than or equal to

√
n

other than 1 implies n is prime.

6If you are interested in seeing proofs for the results leading up to this theorem, this theorem itself, or
theorems like this in general, you may want to take a course in elementary number theory or algebra.
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The former is easy, as n being prime implies that n has no divisors other than 1 and itself
by the definition of a prime number. Since n > 1, we have

√
n < n, so n does not have any

divisors m satisfying 1 < m ≤
√
n.

The latter implication is more challenging, and we will prove its contrapositive. Suppose
that n is not prime; we aim to show that n admits a factor m such that 1 < m ≤

√
n.

Since n > 1, n is necessarily composite. We thus write n = ab for a, b ∈ N such that neither
a = 1 nor b = 1. As proven in Proposition 3.1, either a ≥

√
n or b ≥

√
n. Without loss of

generality, suppose a ≥
√
n. Then

b =
n

a
≤ n√

n
=
√
n,

so b ≤
√
n. Thus, b is a factor of n satisfying 1 < b ≤

√
n, concluding the proof of the second

implication.
With both implications now proven, we are finished the proof of the proposition.

This method can be improved upon the recognition that we must only check for prime
factors p of n such that 1 < p ≤

√
n, as any factor of n larger than 1 must have a prime

factor.
When proving a biconditional statement, it is helpful to consider each implication sep-

arately, as we did above. This helps avoid the aforementioned pitfalls of mistaking the
converse, inverse, and contrapositive, as well as making the argument more readable.
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