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4 Proof by Contradiction

4.1 Background

Last week, we introduced the technique of proof by contrapositive, where to prove an im-
plication we assume that its conclusion is false and show that at least one of its hypotheses
must fail. A similar technique is proof by contradiction. As in proof by contrapositive, we
begin by assuming that the conclusion is false. But instead of directly showing that one of
the hypotheses fails, we invoke the hypotheses at some point in the argument and show that
an absurdity is reached.

For a quick example, for real numbers x and y, consider the statement that ‘if x + y is
irrational then x is irrational or y is irrational’. We can prove this quickly by contrapositive:
suppose that x and y are rational, and it follows that x + y is rational. A related statement
that we would instead prove by contradiction is given by ‘if x is rational and y is irrational
then x + y is irrational’. Assuming x + y is rational does not immediately yield that x is
irrational or that y is rational, as we could have x and y both rational or both irrational and
still have x + y be rational. Consider, for instance, (x, y) = (0, 0) or (x, y) = (

√
2, 1 −

√
2).

However, invoking the additional assumption that x is rational, we have that x + y − x = y
must be rational, which contradicts our other hypothesis. Thus, if x is rational and y is
irrational, x + y must be irrational.

To compare and contrast proof by contradiction with our other two primary techniques
of proof, we consider how to prove an implication P =⇒ Q. To prove it directly, we assume
P and show that Q must hold. To prove it by contrapositive, we assume Q fails and show
that P must fail. To prove it by contradiction, we assume both that P holds and that Q
fails, then show that something else goes wrong.

Occasionally, you may see arguments presented as proofs by contradiction even when they
might be more accurately described as one of the other techniques. For instance, we proved
that there are infinitely many prime numbers by taking an arbitrary finite list of primes
Lk and constructing a prime not on that list. We could have framed the proof as a proof
by contradiction by beginning with the statement ‘suppose for the purpose of contradiction
that there are finitely many primes and let Lk be a list of all of them’, then proceeding with
the same argument to “contradict” the assumption that there are only finitely many primes.
However, we never meaningfully invoke the assumption that Lk is a list of all primes, so the
argument is best left as a proof by construction. Whenever you have completed a proof by
contradiction, it is a good idea to check that you have not framed it as such unnecessarily.
Doing so can cloud the key elements of your argument.
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As a final word on proof by contradiction, it is worth considering the relative merit of
the technique compared to other techniques. Often, direct proofs or proofs by contrapositive
(which we showed are equivalent using a proof by contradiction) read as a chain of reasoning
in which every step provides intuition as to why the next step is true. This is often not the
case with proofs by contradiction, for instead of aiming at the conclusion and watching it
come gradually into focus, we aim for something absurd and watch the conclusion fall out.
Sometimes this makes the proof less enlightening than other types of proof. However, there
are many ways to evaluate the utility of proofs, and there are many circumstances in which a
proof by contradiction is either the only option or the best option available. Now that we are
familiar with several techniques, we will look at evaluating comparative merits of different
proofs of the same statement in the activity at the end of this section.

Before diving into the examples, we introduce the notion of the cardinality of a set.
Loosely, the cardinality of a set S, denoted |S| is the size of S. For finite1 sets, |S| is simply
the number of elements in the set.

We will not study the general definition of cardinality for infinite sets, but will simply
define that sets A and B have the same cardinality when there exists a bijective function
f : A → B. For infinite sets, we will use this criterion to distinguish countable sets from
uncountable sets. A countable set is any set in bijection with N, and an uncountable set is
an infinite set S such that there does not exist a bijective function f : S → N. We will omit
(and in some cases relegate to future exercises) proofs of several properties that we would
want our definition of cardinality to have for now. But it is worth recognizing some of the
things we would want to assure ourselves that our definition captures:

• The cardinality of a finite set is a well-defined natural number.

• Every subset of a finite set is finite.

• Finite sets are in bijection if and only if they have the same cardinality.

• Any infinite subset of a countable set is countable.

• Any infinite set contains a countable infinite subset.

• If S has an uncountable subset then S is uncountable.

You may attempt to prove some of these properties now if you are interested, but we will
assume them for the purpose of providing some interesting examples now.

4.2 Examples

We begin with the canonical example of a proof by contradiction: proving that
√

2 is ir-
rational. Note that we proved this one way already in Corollary 2.7, in which we applied
the rational root theorem to determine that the polynomial x2 − 2 has no rational roots.
However, use of the rational root theorem is more than what is necessary to prove the same
result.

1We say that a set is finite if it is in bijection with {1, 2, . . . , n} for some n ∈ N. Can you see how this
matches our intuition for a set having finitely many elements?
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Proposition 4.1.
√

2 is irrational.

Proof. We rephrase the statement to make it more clear how we will use proof by contradic-
tion. Consider the statement ‘if x is a real number such that x2 = 2 then x is irrational’.2

It is now clear that the hypothesis is ‘x is a real number such that x2 = 2’ and that the
conclusion is ‘x is irrational’. For our proof by contradiction, we assume both that x is
rational (i.e. that our conclusion is false) and that x2 = 2 (i.e. that our hypothesis is true).

Since x is rational, we can write x in lowest terms as a
b
. (The assumption of x being

expressed in lowest terms is key, as it will be what we ultimately contradict.) Accordingly,
x2 = a2

b2
, which by assumption equals 2. Multiplying through by b2 reveals that

a2 = 2b2, (1)

and in particular that a2 is even. We proved in Proposition 3.3 of the previous section that
a2 being even implies that a is even. If we can show that b must also be even, then since
a, b 6= 0, a

b
would not be in lowest terms, yielding the desired contradiction. To do this, we

will leverage the fact that even squares are necessarily divisible by 4.
Because a is even, write a = 2k for some integer k. Returning to equation (1) and

substituting a = 2k yields 4k2 = 2b2, or more simply that b2 = 2k2. Thus, b2 is even, and
by Proposition 3.3, b is even.

We have achieved a contradiction, since if a and b are both even and nonzero, a
b

is not in
lowest terms as assumed. This concludes the proof.

Let us recap our argument. We began by assuming that the conclusion ‘x is irrational’
was false, but instead of showing that the assumption ‘x2 = 2’ must have been false, we
additionally assumed that x2 = 2 and showed that something impossible resulted. Thus, our
assumptions were incompatible, and the desired statement followed.

Such an argument could also be worded more succinctly by beginning with the phrase
‘suppose for the purpose of contradiction that

√
2 is rational, i.e. that

√
2 = a

b
, where a

b
is

in lowest terms’ and proceeding as we did. We chose to write the expanded argument to
emphasize the technique; however, as the technique becomes familiar to you, it is better to
emphasize the argument.

We can sometimes use proof by contradiction to establish that certain equations do not
have solutions that meet specified conditions. We will consider two examples of Diophantine
equations, or polynomial equations in integer unknowns, which do not admit solutions.

Proposition 4.2. The equation x2 − y2 = 10 does not have any solutions (x, y) ∈ Z× Z.

Proof. Suppose for the purpose of contradiction that such a solution (x, y) exists. Then
we have x2 − y2 = (x − y)(x + y) = 10, where x + y and x − y are integers. The only
factorizations of 10 into two factors are 10 · 1, 5 · 2, 2 · 5, and 1 · 10. In all four cases, the
factors have opposite parity; however, x + y and x− y have the same parity. Thus, we have
achieved a contradiction, and there are no integer solutions to x2 − y2 = 10.

In this case, we actually contradicted the existence of the solution of the equation. For
the next equation, we will have to use a craftier argument to contradict a supposed property
of the solution.

2Note that this will prove the slightly more general statement that
√

2 and −
√

2 are irrational.
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Proposition 4.3. The only integer solution to x2 + y2 = 3z2 is (x, y, z) = (0, 0, 0).

Proof. Suppose for the purpose of contradiction that there exists a solution (x′, y′, z′) other
than (0, 0, 0). Then dividing by the greatest common divisor of x′, y′, and z′,3 we can choose
a new solution (x, y, z) such that the greatest common divisor of x, y, and z is 1, and in
particular not all of x, y, and z are even.

From the argument in the claim within Proposition 3.6, z2 leaves remainder 0 or 1 after
dividing by 4. Consequently, 3z2 leaves remainder 0 or 3 after dividing by 4. However, since
3z2 is the sum of two squares, Proposition 3.6 rules out the case that 3z2 leaves remainder
3 after dividing by 4. In other words, 3z2 is a multiple of 4, and in particular 3z2 is even.
Because 3 is odd, we know that z2 must be even, and by Proposition 3.3 we see that z is
even.

Stepping back a few sentences, recall that 3z2 leaves remainder 0 after dividing by 4.
Again by the claim in Proposition 3.6, x2 and y2 leave remainder 0 or 1 after dividing by
4. The only way for x2 + y2 to leave remainder 0 after dividing by 4 is for x2 and y2 each
to leave remainder 0 after dividing by 4. Again, it follows that x2 and y2 are even, then
that x and y are even. We conclude that x, y, and z must all be even. This contradicts the
assumption that the greatest common divisor of x, y, and z is 1, so we conclude that (x, y, z)
cannot exist as prescribed. Thus, there are no integer solutions to x2 + y2 = 3z2 other than
(0, 0, 0).

Another argument by contradiction yields the following corollary:

Corollary 4.4. The curve in the uv-plane generated by u2 + v2 = 3 contains no rational
points.

Proof. Suppose for the purpose of contradiction that there exist rational numbers u and v
such that u2 + v2 = 3. Let u = a

b
and v = c

d
, where both fractions are in lowest terms.

Substituting gives (a
b

)2
+
( c
d

)2
= 3,

and multiplying through by b2d2 gives (ad)2 + (bc)2 = 3(bd)2 for some integers a, b, c, and d.
As proven above, however, this is only possible if ad = 0, bc = 0, and bd = 0. Note that

b and d are nonzero since they are the denominators of fractions, so necessarily a = c = 0.
Hence, u = v = 0, which is not a solution to u2 + v2 = 3. Thus, we have achieved a
contradiction, and u2 + v2 = 3 has no rational points.

4.3 Exercises

1. Prove that there are infinitely many prime numbers p such that p + 2 is composite.

2. In this problem we will prove a few results about countable sets. Let Ai be a countable
set for all i ∈ N.

(a) Prove that the union A1 ∪ A2 is countable.

3We define the greatest common divisor of 3 numbers to be the largest positive integer which is a divisor
of all 3.
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(b) Prove that the union ∪i∈NAi is countable. (Hint: Try to apply a similar technique
to the one used in proving the countability of Q.)

(c) Prove that the Cartesian product A1 × A2 is countable.

(d) Find an example of a countable collection of finite sets Bi such that ×i∈NBi :=
B1 ×B2 × · · · is not countable.4 (Hint: Think about decimal expansions.)

3. Determine whether the following sets are finite, countable, or uncountable. (You may
use the unproven properties of cardinality suggested in section 4.1.)

(a) The set of prime numbers

(b) C
(c) The set of Gaussian integers, i.e. complex numbers a + bi where a, b ∈ Z
(d) The set of algebraic numbers, i.e. roots of polynomials with integer coefficients

Additionally, prove that transcendental numbers, i.e. complex numbers which are not
algebraic, exist. (Note: Even though this proves that transcendental numbers exist, it
does not provide any examples or even hints at what examples might look like.)

4. Determine exactly for which integers c the equation x2−y2 = c admits integer solutions.
Prove your answer. You may use the fundamental theorem of arithmetic in your proof
if needed. (Hint: Start by proving that for integers a and b, there exist integers x and
y such that x + y = a and x− y = b if and only if a and b have the same parity.)

5. A polynomial with integer coefficients is called primitive if the greatest common divisor
of all of its coefficients is 1. Prove that if f and g are primitive, fg is also primitive.
You may use Euclid’s lemma, which states that if a prime p divides the product ab,
either p | a or p | b. (Hint: Assuming f and g are primitive, for any prime p you can
chose the highest-degree term of f and g such that the corresponding coefficient is not
divisible by p.)

6. Using the previous exercise, prove that if h is a primitive polynomial that cannot be
written as a product fg of non-constant integer-coefficient polynomials f and g, h
cannot be written as a product pq of non-constant rational-coefficient polynomials p
and q either. This result is known as Gauss’s Lemma. (Hint: Suppose p and q exist,
then clear denominators.)

7. We will prove some lower bounds for the Hadwiger-Nelson problem, which asks for
the smallest number n of colors needed to paint every point in the plane such that
no 2 points at distance 1 from each other have the same color. (Hint: Think about
triangles.)

(a) Prove that n > 2.

(b) Prove that n > 3.

4The notation := indicates that we are defining the object on the left to equal the object on the right. It
is also common to flip the notation and write =: to make the definition the other way.
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It is known that 5 ≤ n ≤ 7. The upper bound of 7 is given by a certain coloring of
a hexagonal tesselation of the plane. The lower bound of 5 can be proven by similar
techniques to those used for this problem.

8. You may find it surprising to learn that the number line R and the coordinate plane
R × R have the same cardinality. (In fact, the same is true for any infinite set S and
S × S.) Google ‘Peano curve’ and write a few things that you learn. Do you think
there exists a differentiable construction of a space filling curve? The answer follows
from Sard’s theorem, a fundamental result in differential topology.

4.4 Further Reading

CPZ Chapter 5.2, 5.5 Discussion of proof by contradiction.
“The Proof”, Nova Docu-
mentary dir. Simon Singh

An interesting documentary (50 min) on the proof of Fer-
mat’s last theorem, a famously longstanding open prob-
lem in number theory answered by Andrew Wiles in 1994.
http://www.dailymotion.com/video/x1btavd

Wikipedia entry for Cardi-
nality

More on cardinality at a level of speci-
ficity greater than necessary for this section.
https://en.wikipedia.org/wiki/Cardinality

4.5 Further Examples

We now move to a series of statements about cardinalities of common infinite sets, culmi-
nating in a famous proof by contradiction about the cardinality of R. We will see that while
cardinality captures some intuitions about sizes of infinite sets, it fails to match others. As
such, there may be other useful notions of ‘size of a set’ that capture those intuitions.

Proposition 4.5. N, Z, and Q are countable.

Proof. Recall that a set S is countable if it there exists a bijection between S and N. Some-
times, the easiest way to prove the existence of a certain function is to construct it explicitly,
which is exactly what we will do here.

Observe that the identity map on N is a bijection from N to itself, so N is trivially
countable.

It is trickier to show that Z is countable, for N includes in Z naturally as a proper subset.
However, consider the map f : Z → N given by sequentially enumerating integers with
alternating sign, i.e. 0 7→ 1, 1 7→ 2,−1 7→ 3, 2 7→ 4,−2 7→ 5, etc.5 We want to show that f is
a bijection between Z and N, so we must check three things: that f is a valid function, that
f is injective, and that f is surjective.

5The arrow ‘→’ is used to describe which sets a function maps between, while the arrow ‘7→’ is used
to describe where the function maps particular elements. The arrow ‘↪→’ is like →, but denotes that the
function is injective.
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(0, 0)(−4, 0) (4, 0)

Figure 1: The black dots represent elements of Q. If q is the n-th point hit by the depicted
path, we define f(q) = n.

To check that f is a valid function, we must check that for every element of Z, f assigns
a unique element of N.6 In this case, however, we can check that f assigns an element of N
to each element of Z simply by writing f(k) for all k ∈ Z. We have

f(k) =

{
2k k > 0

−2k + 1 k ≤ 0,

and it is clear that f assigns a natural number to every integer. To see that f is injective,
observe that in our procedure for defining values of f , we never let f take the same value
twice, and it follows that f is injective. To see that f is surjective, observe from our formula
for f(k) above that the image of f contains all even and odd natural numbers. Thus, f is a
well-defined bijection from Z to N, and Z is countable.

To construct a bijection f : Q → N, we will consider elements of Q to be ordered pairs
(a, b) ∈ Z × Z7 where b > 0 and gcd(a, b) = 1.8 We then enumerate the elements of Q by
starting at (0, 1) and spiraling outward as depicted in figure 1.

As before, we must check three things: that this procedure assigns a natural number to
every rational number, that the assignment is injective, and that it is surjective.

While it is difficult to write an explicit formula for f , we can show that f(q) is well
defined by bounding it above to observe that indeed every rational number is assigned a
finite value. For q = a

b
in lowest terms, let M = max{|a|, |b|}, and observe that f(q) is

bounded above by the finite number of integer-coordinate points inside the rectangle with
vertices (−M, 0), (M, 0), (M,M), (−M,M). We conclude that f assigns a finite value to each
q ∈ Q, so f is truly a function f : Q→ N.

6This is necessary because if we define a function procedurally, we need to make sure that all elements of
the domain are assigned values. For instance, defining g as a purported function from Z to N by 1 7→ 1, 2 7→
2, 3 7→ 3, etc. gives an injection and a surjection; however, g is not even a function from Z to N, since g
never assigns values to all elements of Z.

7The Cartesian product of two sets S and T , denoted ‘S×T ’, is the set of ordered pairs (s, t) where s ∈ S
and t ∈ T . A familiar example is the coordinate plane R× R.

8Implicitly, we are using the fact that any rational number can be written in lowest terms with positive
denominator uniquely to construct a bijection g from Q to the subset of Z×Z with coprime coordinates and
positive second coordinate.
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Injectivity of f follows from the fact that each value in N is assigned only once, as in the
Z case.

We prove surjectivity by showing that for an arbitrary n ∈ N, there exists q ∈ Q such
that f(q) = n. Observe that if f(q) = n, then all natural numbers m < n have also been
assigned, so there exists q′ such that f(q′) = m for any natural number m < n. Additionally,
observe that for natural numbers n, f(n) > n. Thus, for any natural number n, f(n) > n,
and the value n must have been assigned to some other rational number q′. We conclude
that f is surjective.

In sum, we have constructed a well-defined bijection from Q to N, and we conclude that
Q is countable.

Perhaps it is surprising that even though Q and Z might seem like much larger sets than
N, we can choose one-to-one correspondences between them. You might be inclined to ask
whether the same is true for R, but this turns out not to be the case.

In proving that R is uncountable, we invoke the fact that any real number x ∈ (0, 1)
has a unique decimal expansion x = .a1a2a3 . . . such that ai ∈ {0, 1, . . . 9} for all i ∈ N and
there does not exist N ∈ N such that ai = 9 for all i > N . (The condition that ai must
be something other than 9 for infinitely many i is simply to eliminate redundancy such as
.1 = .09.)

Theorem 4.6. R is uncountable.

Proof (Cantor’s Diagonal Argument). Since we are granting the fact that a superset of an
uncountable set is uncountable and R ⊃ (0, 1), it suffices to prove that (0, 1) is uncountable.

Suppose for the purpose of contradiction that (0, 1) is countable, and choose an enumer-
ation n 7→ xn of the elements of (0, 1). That is, choose a bijection f : N→ (0, 1) and define
xn = f(n). As mentioned above, each xn has a unique decimal expansion .an1an2an3 . . .
subject to the condition of avoiding expansions like .09 and choosing .1 instead.

Consider a sequence bi chosen such that bi ∈ {0, 1 . . . , 9} for all i ∈ N, bi 6= aii and
bi 6= bi−1 for every i ∈ N. Such a sequence necessarily possible to construct since aii and
bi−1 can comprise at most 2 of the 10 possibilities for bi. Moreover, .b1b2b3 . . . is a decimal
expansion for some real number y ∈ [0, 1].

We now aim to show that y ∈ (0, 1) and y 6= xn for any n ∈ N. First, observe that
y ∈ (0, 1) since the only decimal expansions for 0 and 1 are .0 and .9 respectively, both of
which are forbidden by the restriction bi 6= bi−1. We thus just must show that y 6= xn for
any n.

By construction, the i-th digit of the decimal expansion for y (specifically bi) does not
equal the i-th digit of the decimal expansion for xi (specifically aii), so the chosen decimal
expansion for y does not match that of any of the xn. The only way for distinct decimal
expansions to have the same value is if they differ by an exchange of form .09 ↔ .1. By
assumption, all of the chosen expansions ani

for the xn have infinitely many entries not equal
to 9, and by the condition that bi 6= bi−1, so does the expansion bi of y. Thus, y 6= xn for all
n ∈ N, and we have found an element of (0, 1) which is not in the image of f . This contradicts
the assumption that f is surjective, so we conclude that no bijection exists between N and
(0, 1). Thus, (0, 1) is uncountable, and so is R.
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One intuition that this result solidifies is that there are “more” real numbers than rational
numbers.
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