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5 Mathematical Induction I

5.1 Background

The proof techniques we have developed so far give us an array of tools for proving im-
plications P =⇒ Q. However, in some instances proving one implication is not enough.
Sometimes, we are faced with an infinite family of related statements P1, P2, P3 . . . and want
to prove them all true. In doing so, we prove all of the Pn by lining them up like dominoes

P1 =⇒ P2 =⇒ P3 =⇒ . . . =⇒ Pn =⇒ Pn+1 =⇒ . . .

so that knocking down the first one (P1) makes them all fall.
A classic example is the proof that 1 + 3 + . . . + 2n − 1 = n2 for all n ∈ N. We aim

to prove Pn =⇒ Pn+1 for all n, then show that P1 is true. Let Pn be the statement
1 + 3 + . . . + 2n − 1 = n2 for fixed n. Assuming Pn to be true, we can add 2n + 1 to both
sides to obtain 1 + 3 + . . .+ 2n+ 1 = n2 + 2n+ 1 = (n+ 1)2, precisely the statement Pn+1.
Hence, we proved Pn =⇒ Pn+1 for all n ≥ 1. It then remains to show that P1 is true, which
is easy to check: 1 = 1. From this, we could conclude that Pn is true for all n ∈ N, which is
precisely the claim.

This is the most basic form of mathematical induction and what we will focus on this
week. The most immediate application of this technique is in proving that a family of
statements holds true for all natural numbers n.

Sometimes, the step of proving Pn =⇒ Pn+1 is called the inductive step, and the P1

case is known as the base case. As a warning, some arguments require checking multiple
base cases rather than just P1.

1 For instance, explicit formulas for recursive sequences can
often be proven by induction. But if the recurrence depends on the previous k terms of the
sequence, all of the first k must be checked. In general, it is important to verify that the
cases you have directly checked match the required hypotheses of the inductive step.

Inductive arguments may take many forms while still having the same two principal
steps. Sometimes, you may need to assume more than Pn to prove Pn+1. Perhaps you need
to assume both Pn−1 and Pn, or even Pk for all k ≤ n, to prove Pn+1. We will also (over this
section and the next) see examples of multiple inductions, nested inductions, induction on

1This is why we write most induction arguments by proving the inductive step before checking the base
case. When we have already written the inductive step carefully, it is easier to see how many base cases are
necessary to ‘knock all of the dominoes down’, per our analogy. Many authors write the inductive step after
the base case, which still results in a valid proof.
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geometric constructions, and more. However, the general principle remains the same: make
sure that your inductive step reaches all the cases you aim to prove and that your base cases
cover all of the necessary inputs to your inductive step. Quoting our domino analogy one
last time, make sure that you arrange your dominoes in a way that they will all fall once a
certain few are knocked over, then make sure that you knock over those certain few correctly.

Mathematical induction is a powerful technique that manifests in all branches of math-
ematics. We will begin with a few examples that make induction the clear choice of proof
technique, then branch into examples that showcase the beauty and utility of mathematical
induction beyond proving formulas.

5.2 Examples

We begin with a classic example of proof by induction to familiarize ourselves with the
technique. Let Sn denote the sum of the first n natural numbers, so Sn = 1 + 2 + . . .+ n =∑n

i=1 i. We wish to find an explicit formula for Sn. Writing out a table of Sn for small n
gives the following.

n Sn

1 1
2 3
3 6
4 10
5 15

n Sn

6 21
7 28
8 36
9 45
10 55

Either by plotting successive differences of the Sn or by plotting a graph of Sn versus n, a
quadratic relationship is suggested. We conjecture that Sn = an2 + bn+ c for some numbers
a, b, and c to be found. Substituting Sn and n for n = 1, 2, 3 gives the following system of
equations for a, b, and c. 1 1 1

4 2 1
9 3 1

ab
c

 =

1
3
6


This has the unique solution (a, b, c) = (1/2, 1/2, 0), giving us the suggestion that Sn =

(n2 + n)/2 = n(n+ 1)/2, which we now aim to prove.

Proposition 5.1. Sn = n(n+1)
2

for all n ∈ N.

Proof. We will begin by proving that if the formula holds for n = k then it also holds for
n = k + 1. Suppose that

∑k
i=1 i = k(k + 1)/2. Adding k + 1 to both sides gives(

k∑
i=1

i

)
+ (k + 1) =

k(k + 1)

2
+ k + 1.

We can pull the k + 1 on the left side into the summation by increasing the upper limit of
the summation to k + 1, obtaining

k+1∑
i=1

i =
k(k + 1)

2
+ k + 1.
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The left side is now by definition equal to Sk+1, so it remains to show that the right side is
equal to (k + 1)(k + 2)/2, i.e. that the formula for Sn holds for n = k + 1. We have

k(k + 1)

2
+ k + 1 =

k2 + 3k + 2

2
=

(k + 1)(k + 2)

2
,

as desired. This completes the proof that if the formula holds for n = k, the formula holds
for n = k + 1.

Since we only use each individual case n (and no previous cases) to prove case n + 1, it
suffices to check n = 1 as our lone base case. From direct computation, we see that S1 = 1
and that 1(1 + 1)/2 = 1, so the formula holds when n = 1. Thus, the formula holds for all
n ∈ N, completing the proof.

To put it explicitly in the language of proving an infinite family of statements Pn, let the
statement Pn be ‘Sn = n(n + 1)/2’. The proposition is precisely the statement that Pn is
true for all n ∈ N. We then proved that for all k ≥ 1, Pk =⇒ Pk+1, i.e. that if the formula
holds for n = k, it also holds for n = k + 1. Then, all that remained to do to conclude that
Pn is always true was show that P1 is true, which was as simple as writing 1 = 2/2.

We now turn to prove a slightly more complicated formula. This time, our argument will
require using Pn and Pn−1 to prove Pn+1, so we will have to check 2 base cases.

The Fibonacci sequence, known for its ubiquity in nature2 and connection to the Golden
Ratio, is an example of a recursively defined sequence, where for all n ≥ 2, the n-th Fibonacci
number Fn is given by Fn = Fn−1 + Fn−2. By convention, we set F0 = 0 and F1 = 1, so
the first few Fibonacci numbers are 1, 1, 2, 3, 5, 8, 13, etc. Taking common quotients between
terms, it appears that the Fibonacci sequence behaves roughly like a geometric sequence
rn. Since Fn = Fn−1 + Fn−2, we expect that such an r would satisfy rn = rn−1 + rn−2, or
equivalently after dividing through by rn−2, r2− r− 1 = 0. This gives two possibilities for r:

r =
1 +
√

5

2
=: φ or r =

1−
√

5

2
=: ψ.

Neither quite gives the Fibonacci sequence as a geometric series, but a bit of experimentation3

suggests the following proposition.

Proposition 5.2. Fn = 1√
5
(φn − ψn) for all n ≥ 0.

Since |ψ| ∈ (0, 1), ψn → 0 as n→∞. This explains why Fn/Fn−1 → φ as n→∞.

Proof. As our inductive step, we will show that if the formula holds for n = k− 1 and n = k
then it holds for n = k+ 1. Suppose that Fk−1 = (φk−1−ψk−1)/

√
5 and Fk = (φk−ψk)/

√
5.

Then

Fk+1 = Fk + Fk−1 =
1√
5

(
φk + φk−1 − (ψk + ψk−1)

)
=

1√
5

(φk+1 − ψk+1),

2See Section 5.4 for cool examples!
3Two standard ways of finding the formula in Proposition 5.2 include finding the eigenvectors of a par-

ticular matrix and manipulating a generating function.
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where for the last equality we used the fact that φ and ψ both satisfy x2 = x+1 and therefore
xk+1 = xk + xk−1. This is exactly the desired formula Fk+1 = (φk+1−ψk+1)/

√
5, completing

our proof of the inductive step.
In our inductive step, we had to assume that the formula held for 2 previous cases. We

therefore must check the formula holds for the first 2 cases. Indeed, (φ0 − ψ0)/
√

5 = 0 = F0

and (φ1 − ψ1)/
√

5 = 1 = F1. This completes the proof of the proposition.

To translate once more into our language of proving the family of statements Pn, let Pn

be ‘Fn = (φn − ψn)/
√

5’. For our inductive step, instead of proving Pn =⇒ Pn+1 for all n,
we proved that Pn−1 and Pn =⇒ Pn+1. This makes our chain of implications look like

P0 and P1 =⇒ P1 and P2 =⇒ . . . =⇒ Pn−1 and Pn =⇒ Pn and Pn+1 =⇒ . . . ,

so to prove all of the Pn, we needed to check the base cases of P0 and P1.
Without significantly complicating the technique, we can prove a result invoked during

the proof of Proposition 3.4. We claimed that we could factor the polynomial x2n+1 + 1 as
(x+ 1)

(∑2n
i=0(−x)i

)
, recalling the familiar example x3 + 1 = (x+ 1)(x2− x+ 1). We aim to

prove this inductively.

Proposition 5.3. x2n+1 + 1 = (x+ 1)
(∑2n

i=0(−x)i
)

for all n ∈ N ∪ {0}.

Proof. Choose n > 0 and suppose that x2n−1 + 1 = (x + 1)
(∑2n−2

i=0 (−x)i
)
; we aim to show

that x2n+1 + 1 = (x+ 1)
(∑2n

i=0(−x)i
)
. We begin by writing

x2n+1 + 1 = x2n+1 + x2 − x2 + 1 = x2(x2n−1 + 1)− x2 + 1

to put the factorization we seek to prove in terms of the one we are assuming.
We invoke our inductive hypothesis to replace the x2n−1 + 1 term in parentheses, giving

x2n+1 + 1 = x2(x+ 1)

(
2n−2∑
i=0

(−x)i

)
− x2 + 1.

Pulling the x2 inside the summation amounts to shifting the index up 2, yielding

x2n+1 + 1 = (x+ 1)

(
2n∑
i=2

(−x)i

)
− x2 + 1.

To combine terms, we factor the −x2 + 1 as (x+ 1)(1− x) and substitute this to obtain

x2n+1 + 1 = (x+ 1)

(
2n∑
i=2

(−x)i

)
+ (x+ 1)(1− x).

Lastly, observe that the 1 − x term consists precisely of the i = 0 and i = 1 terms missing
from the summation. Rearranging therefore gives

x2n+1 = (1 + x)

(
2n∑
i=0

(−x)i

)
,
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as desired.
Since our argument only depends on the n − 1 case being true to prove that the n

case is true, we only need to check the n = 0 case. Fortunately, this is immediate as
x+ 1 = (x+ 1)(1).

The above is a good example of induction being used to prove something other than an
explicit formula for a sequence of numbers. In our next example, we use a simple induction
to derive an interesting corollary from a more involved direct proof.

We define the binomial coefficient(
n

k

)
=

n!

(n− k)!k!

whose name stems from the fact that
(
n
k

)
is the coefficient of xk in the polynomial (x+ 1)k.

A priori, it is not clear from the given formula that the binomial coefficient is an integer.
However, this can be proven by a clever induction argument.4 First, we prove that we can
write the binomial coefficients

(
n+1
k

)
in terms of the coefficients

(
n
k

)
via what is known as

Pascal’s triangle formula.

Proposition 5.4.
(
n+1
k

)
=
(

n
k−1

)
+
(
n
k

)
for all k ∈ {1, . . . , n} and all n ∈ N.

Proof. This is a proof by computation, where we simply match denominators and rearrange
as follows: (

n

k − 1

)
+

(
n

k

)
=

n!

(k − 1)!(n− k + 1)!
+

n!

k!(n− k)!

=
n!k

k!(n− k + 1)!
+
n!(n− k + 1)

k!(n− k + 1)!

=
n!(n+ 1)

k!(n− k + 1)!

=
(n+ 1)!

k!(n− k + 1)!
=

(
n+ 1

k

)

Now, we know that we can write
(
n+1
k

)
in terms of the binomial coefficients

(
n
k

)
and

(
n

k−1

)
.

This gives the following corollary.

Corollary 5.5.
(
n
k

)
is an integer for all k ∈ {0, . . . , n} and all n ∈ N.

Proof. First, observe that
(
n
0

)
and

(
n
n

)
are both 1 for all n ∈ N, as can be verified by direct

computation. They are thus integers, and we reduce to proving that
(
n
k

)
is an integer for

k ∈ {1, . . . , n− 1} and all n ∈ N. By Proposition 5.4, these coefficients can be expressed as
a sum of binomial coefficients with a lower n. This proves the inductive step: if

(
n
k

)
∈ Z for

all k ∈ {1, . . . , n− 1} then
(
n+1
k

)
∈ Z for all k ∈ {1, . . . , n}.

We are left to check the base case n = 1. Indeed, both
(
1
0

)
and

(
1
1

)
equal 1 and so are

integers, completing the proof.

4Another way to prove that
(
n
k

)
is an integer for 0 ≤ k ≤ n is to prove that it counts something; more on

this in the next section.
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We can also use induction to evaluate certain sums of binomial coefficients.5 For example,
we have:

Proposition 5.6.
∑n

k=0

(
n
k

)
= 2n for all n ∈ N.

Proof. For the inductive step, suppose
∑n

k=0

(
n
k

)
= 2n. We aim to show that

∑n+1
k=0

(
n+1
k

)
=

2n+1. By Pascal’s triangle formula, we have

n+1∑
k=0

(
n+ 1

k

)
=

(
n+ 1

0

)
+

(
n+ 1

n+ 1

)
+

n∑
k=1

(
n+ 1

k

)
= 2 +

n∑
k=1

((
n

k − 1

)
+

(
n

k

))
.

Observe that by shifting the index k, we have that
∑n

k=1

(
n

k−1

)
=
∑n−1

k=0

(
n
k

)
, which in turn

equals
∑n

k=0

(
n
k

)
− 1. Likewise,

∑n
k=1

(
n
k

)
=
∑n

k=0

(
n
k

)
− 1. Substituting this into the above

yields
n+1∑
k=0

(
n+ 1

k

)
= 2 + 2

n∑
k=0

(
n

k

)
− 2 = 2

n∑
k=0

(
n

k

)
.

By the inductive hypothesis, we then have that
∑n+1

k=0

(
n+1
k

)
= 2 · 2n = 2n+1, as desired.

We now check the base case n = 1. Via direct computation, we see that
∑1

k=0

(
1
k

)
=

1 + 1 = 21. This concludes the proof.

The intuition for this result follows from the computation of the cardinality of the pow-
erset of a finite set. See Exercise 7 for more details.

We now conclude the first induction section with one more algebriac induction example:
the arithmetic mean/geometric mean (AM-GM) inequality. For this example, however, the
induction does not proceed as P1 =⇒ P2 =⇒ P3 . . .. In addition to being a useful result
in analysis, the proof of this theorem is a gateway into the world of more advanced inductive
arguments.

Theorem 5.7. Let n ≥ 2 be a natural number and let x1, . . . , xn be nonnegative real
numbers. Then their arithmetic mean is greater than or equal to their geometric mean, i.e.

x1 + . . .+ xn
n

≥ n
√
x1 · · ·xn.

Let’s unpack what this means for the case n = 2. We claim that for x, y ≥ 0, their
arithmetic mean (x+ y)/2 is at least their geometric mean

√
xy. We know that 0 ≤ (

√
x+√

y)2 = x+ 2
√
xy + y, and rearranging gives

x+ y

2
≥ √xy (1)

as desired.

5This is the binomial formula for (x + y)n with x = y = 1. More on the general binomial formula later.
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Proof. The fact that we are proving a statement for a finite collection {xn} with varying
size may make you think to induct on n, the size of the collection. However, a few minutes
of trying to prove the n + 1 case from the n case may be enough to convince yourself that
straightforward induction does not quite fit the problem.

Instead, we use the following strategy for our inductive step.

1. Assume that the AM-GM inequality holds for 2 numbers and for n numbers, then
prove that it holds for 2n numbers.

2. Assume that the AM-GM inequality holds for n numbers, then prove that it holds for
n− 1 numbers.

To see why this is a sufficient inductive step, let Pn be the statement ‘the AM-GM inequality
holds for n nonnegative real numbers’. Observe that if we complete steps 1 and 2, we will
have the following implications in place:

P2
+3 P4

+3

��

P8
+3

��

P16
+3

��

. . .

P3 P7

��

P15

��
P6
...

P14
...

It is clear from the diagram that Pn is hit by some chain of implications starting with P2 for
all n > 2. Thus, after completing the above inductive step, it will only remain to prove that
P2 holds.

Step 1: Suppose that the AM-GM inequality is valid for a collection of n nonnegative
real numbers, and let x1, . . . , x2n be a collection of 2n nonnegative real numbers. We begin
by writing

x1 + . . .+ x2n
2n

=
1

2

(
x1 + . . .+ xn

n
+
xn+1 + . . .+ x2n

n

)
.

In other words, we have shown that the arithmetic mean of the 2n numbers is the arithmetic
mean of the arithmetic means of the first n and the last n of them. Applying the assumed
case of the AM-GM inequality for n numbers twice, we obtain

x1 + . . .+ x2n
2n

≥ 1

2
( n
√
x1 · · ·xn + n

√
xn+1 · · ·x2n) .

Because the geometric mean of n nonnegative real numbers is itself a nonnegative real num-
ber, we can apply the (also assumed) n = 2 case of the AM-GM inequality to see that

x1 + . . .+ x2n
2n

≥
√

n
√
x1 · · ·xn n

√
xn+1 · · ·x2n = 2n

√
x1 · · · x2n,

which is exactly the desired 2n case of the AM-GM inequality!
We see now that moving from n to 2n rather than from n to n + 1 allowed for the

necessary consolidation of the two n-th roots into the geometric mean of all 2n numbers.
This concludes step 1, so we now move to step 2.
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Step 2: Suppose that the AM-GM inequality holds for a collection of n nonnegative
real numbers, and let x1, . . . , xn−1 be a collection of n − 1 nonnegative real numbers. Let
α = (x1+. . .+xn−1)/(n−1), the arithmetic mean of the xn, itself a nonnegative real number.
Observe that

α =
x1 + . . .+ xn−1 + α

n
,

so the arithmetic mean of the xn is unchanged by adding α to the collection. Now we have
a collection of n nonnegative real numbers to which we can apply the AM-GM inequality to
obtain

α ≥ n
√
x1 · · ·xn−1 · α.

Since all quantities are nonnegative, we can raise both sides to the n-th power without
altering the inequality, giving

αn ≥ x1 · · ·xn−1 · α.

Dividing by α and taking the (n− 1)-th root on both sides gives

x1 + . . .+ xn−1
n− 1

= α ≥ n−1
√
x1 · · ·xn−1,

completing the proof of step 2!
Our proof is thus contingent upon the n = 2 case of the AM-GM inequality. But we

discussed after stating the general theorem that this amounts to statement (
√
x+
√
y)2 ≥ 0,

arriving at equation (1). We are thus finished the entire proof of the AM-GM inequality.

The AM-GM inequality is just the beginning of using induction to prove complicated
chains of implications and provides a hint to the power of the technique. Next week, we will
focus on more intricate induction arguments, including some cases in which induction may
not initially seem like a viable strategy. We will also examine a few proofs of the fundamental
theorem of arithmetic which have been withheld until now.

5.3 Exercises

1. For z ∈ C, let z̄ denote the complex conjugate of z. For z1, . . . zn ∈ C, prove that

(a) z1 + . . .+ zn = z̄1 + . . .+ z̄n and

(b) z1 · · · zn = z̄1 · · · z̄n.

2. For b1, . . . , bn ∈ N and z ∈ C, prove the sum/product formula for exponents: zb1+...+bn =
zb1 · · · zbn .

3. For differentiable functions f and g, the product rule gives (fg)′ = f ′g + g′f . For n
differentiable functions fi, what is the derivative of

∏n
i=1 fi?

4. Find an explicit cubic polynomial formula in n for computing An =
∑n

i=1 i
2 as in the

lead-up to Proposition 5.1. Use mathematical induction to prove that your formula
holds for all n ∈ N.
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5. Find an explicit quartic polynomial formula in n for computing Bn =
∑n

i=1 i
3 as in the

lead-up to Proposition 5.1. Use mathematical induction to prove that your formula
holds for all n ∈ N.

6. Prove that for all n ∈ N, xn − 1 = (x− 1)
(∑n−1

i=0 x
i
)
.

7. Let S be a finite set with n elements. Prove that the set of all subsets of S, referred
to as the powerset of S and denoted P(S),6 has 2n elements. Does this match your
intuition?

8. Google the game ‘towers of Hanoi’, and use induction on n to prove that for a setup
with n disks on 3 pegs, the game can be completed in 2n − 1 moves.

9. Using the limit definition of the derivative

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

and the binomial theorem, prove directly (without induction) that d
dx

(xn) = nxn−1.
Now prove the same statement by induction in another way, using only the product
rule and the fact that the derivative of a constant function is 0.

10. Google ‘arithmetic mean-geometric mean inequality’ and read a proof different to the
one given in this section. How do the two arguments differ? How are they similar?

5.4 Further Reading

CPZ Chapter 6.2 Another explanation of mathematical induction with exer-
cises

“Fibonacci Numbers and
Nature” by Dr. Ron Knott

Examples manifestations of the Fibonacci sequence in na-
ture both coincidental and not
www.maths.surrey.ac.uk/hosted-
sites/R.Knott/Fibonacci/fibnat.html

6Note that the powerset includes S itself and the empty set with no elements, denoted ∅. For example,
let S = {A,B}. Then P(S) = {∅, {A}, {B}, {A,B}}.
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