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6 Mathematical Induction II

6.1 Background

Last week, we introduced induction as a technique to prove a family of statements {Pn}n∈N
by proving the implications Pn =⇒ Pn+1 and then proving P1. We also saw a few examples
which required checking multiple base cases (as in the proof of the explicit formula for
Fibonacci numbers) or more complicated networks of implications (as in the proof of the
AM-GM inequality). Two main ideas united all of the examples: all of the examples were
algebraic in nature, and they all featured an exhaustive implication structure.

This week, we will broaden our understanding of induction by studying more diverse
applications of inductive reasoning. We will look at inducting on geometric objects, mixing
inductive reasoning with proof by contradiction, and most importantly, using induction to
prove results other than formulas and inequalities. The role of exhaustive implications will
still hold, but it will take less central of a role. Rather than specifically diagramming an
implication network, we will develop a more abstract appreciation for induction as a tool for
moving from a handful of established cases to all cases.

6.2 Examples

We open this section with a famous example of inducting on a geometric structure. Col-
loquially, the problem is usually framed as, ‘How many pieces of cake can be cut with n
straight-line cuts?’ More formally, we are interested in computing the maximal number of
regions into which a circular disk can be divided with n chords. As in many of the exam-
ples of the previous discussion of induction, we essentially want a formula for the maximum
number Cn of regions formed by n chords. Here, however, our induction variable n has a
genuine geometric meaning: the number of chords.

Whenever trying to prove that a result holds for all n, we first need to figure out what
to prove. Drawing a few diagrams and playing with the arrangement of the chords suggests
that Cn = 2, 4, 7, 11, 16 for n = 1, 2, 3, 4, 5, respectively. The drawings become more difficult
to construct and decipher for higher n, but using the method in the lead-up to Proposition
5.1 suggests the formula Cn = n(n + 1)/2 + 1. Recalling that the sum of the first n natural
numbers Sn = n(n + 1)/2, we conjecture Cn = Sn + 1.

Proposition 6.1. Let Cn denote the maximal number of regions into which a circle can be
divided with n chords. For all n ∈ N, Cn = Sn + 1.
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Proof. In the proof that Sn = n(n + 1)/2, we had to prove that two algebraic expressions
for Sn were equal, namely

∑n
i=1 i and n(n+ 1)/2. In this case, we do not have an expression

for Cn in terms of an explicit summation, so we will need to adjust our approach. We aim
to use a geometric argument to prove that Cn = n + Cn−1 for all n > 1. We already know
that the Sn satisfy this recursion. If we can show that the Cn do as well, we can borrow the
inductive step the argument in Proposition 5.1. Then, since any chord cuts a circle into two
regions, we have our base case C1 = 2 = S1 + 1 and will be done.

This is where the proof requires an understanding of the geometry. Suppose we have
n − 1 chords cutting a circle into C regions. We first claim that the n-th chord can create
at most n new regions. Each chord creates a new region by dividing a region that it passes
through in two, so equivalently we claim that the n-th chord passes through the interiors of
at most n preexisting regions. This follows from the geometric observation that if the n-th
chord enters the interior of a new region then it crosses one of the first n− 1 chords (which
can happen at most n− 1 times). Thus, accounting for the initial region in which the chord
began, we get at most C + n regions after placing the n-th chord. Since C ≤ Cn−1, we
conclude that Cn ≤ n + Cn−1.

We have now placed an upper bound on how many new regions can be created by the
n-th chord and aim to show that this bound can be achieved. Observe that it is possible
to choose n lines in the coordinate plane such that they all intersect each other somewhere
and no 3 intersect at the same point. We can do this inductively, for if we can place n − 1
lines in such a fashion, we can place the n-th far enough from the origin to avoid all of the
other intersection points and choose its slope to be unequal to any of the previously selected
slopes. By the reasoning above, the n lines divide the plane into Rn regions where R1 = 2
and Rn = n+Rn−1, with exact equality due to the facts that each line does intersect all the
others and each intersection point is shared by only 2 lines. By scaling the plane, we can
ensure that all of the lines’ intersection points, and thus parts of all Rn regions, fit into the
interior of a circle with any given radius. Thus, we have Rn ≤ Cn and Rn = Sn + 1, which
along with the fact that Cn ≤ Sn + 1 give Cn = Sn + 1 for all n ∈ N.

We can view the circle with n chords sliced (for n = 1, 2, 3 . . .) as a collection of circles:
one with just the first chord sliced, another with the first and second chords sliced, and so
forth. Understanding the proof of the formula for Cn required us to understand how all of
the dissected circles in this family depend on each other. Justifying a recursion took the
majority of the work; finding the candidate formula just required an analogy to a familiar
algebraic induction argument.

In addition to inducting on geometric objects, we can induct on combinatorial structures.
For instance, suppose we want to count the number of size-k subcollections of a collection
of n items. You may know that the answer is given by the binomial coefficient

(
n
k

)
, but it

requires some care to prove that this is the correct quantity:

Proposition 6.2. The number of subsets with k elements of a set with n distinct elements
is given by

(
n
k

)
for 0 ≤ k ≤ n.

Proof. We will prove this by inducting on k upon first choosing n ≥ 0. Let S be a set with
n distinct elements, and suppose that

(
n
k

)
is the number of subsets of S with k elements

for some k satisfying 0 ≤ k < n. We wish to count the number of subsets of S with k + 1
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elements. Let i ∈ I index the collection of subsets Ti ⊂ S with k elements and j ∈ J index
the collection of subsets Uj ⊂ S with k + 1 elements. For each Ti, we can form n− k of the
Uj by choosing each of the n− k elements of the complement S \Ti and adding it to Ti. But
there is repetition in this process: each set Uj is formed this way from exactly k + 1 of the
Ti, since eliminating each of the k + 1 elements of any Uj results in distinct sets Ti. Thus,
we have

|J | = n− k

k + 1
|I| = (n− k)n!

(k + 1)k!(n− k)!
=

n!

(k + 1)!(n− (k + 1))!
=

(
n

k + 1

)
.

Our inductive step is complete, and it just remains to check the case k = 0 (which we
also could have done at the outset). Observe that for all n,

(
n
0

)
= 1, which matches the

number of empty subsets of a set of any size. We thus conclude that
(
n
k

)
has the expected

combinatorial interpretation for all k satisfying 0 ≤ k ≤ n.

Note that the preceding argument worked with a fixed n throughout, and for each fixed
n, we performed a “finite induction”, systematically working from k = 0 to k = n. Even
though this is not an “official” induction on k ∈ N for fixed n, the style of the proof can still
be regarded as inductive.

One of the exercises addresses why this binomial coefficient is also the coefficient of xkyn−k

in the expansion (x + y)n, which has a similar combinatorial interpretation.
In addition to inducting on structures, we can induct on processes, which we will first do

to prove the existence of prime factorizations for all natural numbers greater than 1. Our
intuition is that any n > 1 is either prime or has a prime factor p1, and if so, n/p1 is either
prime or has a prime factor p2, and so on until we have a list of primes that multiply to
n. Induction allows us to formalize this argument. In particular, we will need to use strong
induction, whereby to prove the n = k case, we assume not just the n = k − 1 case, but all
cases n = k′ < k. This is helpful because the divisibility aspect of a given k has little to do
with that of k − 1, but much to do with that of the proper factors of k.

Proposition 6.3. Let n > 1 be a natural number. Then n has a prime factorization.

Proof. We argue by induction on n ≥ 2 for the existence of a prime factorization. The case
n = 2 holds because 2 is prime, so now suppose n > 2 and that all integers m such that
1 < m < n are known to have a prime factorization. If n is prime then it is its own prime
factorization, and otherwise n = ab for positive integer factors a, b < n. We cannot have
a = 1 or b = 1 (since ab = n with a, b 6= n), so 1 < a, b < n. By our (strong) inductive
hypothesis each of a and b is therefore a product of finitely many primes, so the same holds
for ab = n.

A slight variant on this technique, inducting on the degree of a polynomial, can be used
to prove that a degree-n polynomial can have at most n roots. Instead of dividing out prime
factors from n, we will divide out linear factors (z − r) from a polynomial p(z):

Proposition 6.4. Let p(z) = cnz
n + . . . + c1z + c0 be a polynomial of degree n ≥ 1 (i.e.

cn 6= 0) with coefficients cj ∈ C. Then p has at most n roots in C.
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Before beginning, we note that the proposition does not assert that p actually has n roots.
For polynomials of positive degree with complex coefficients, the fundamental theorem of
algebra guarantees that there are exactly n complex roots counted with multiplicity. But
this is not necessarily true for other number systems such as Q or R, and even in the complex
numbers, it is generally not possible to give a formula for the roots as can be done for n = 2
and also n = 3, 4 with much effort.

Proof. We first establish the broader induction picture. Suppose z = r is a root of p(z).
We claim that p(z) = (z − r)q(z) for a polynomial q(z). If so, q(z) will have degree n − 1
(look at the top-degree parts of z − r, q(z), and p(z)). Then by induction q(z) has at most
n− 1 roots. But any root a of p(z) satisfies 0 = p(a) = (a− r)q(a), so there are at most n
possibilities for a as desired. (Note that it might happen that r is also a root of q, so this
argument only provides an upper bound on the number of roots.)

It remains to prove that if p(r) = 0, then p(z) = (z − r)q(z) for a polynomial q(z).
Observe that p(z) = p((z − r) + r), so we can express p(z) as a polynomial in z − r, i.e. by
expanding each ((z − r) + r)j via the binomial formula we can find d0, d1, . . . , dn ∈ C such
that

p(z) = dn(z − r)n + . . . + d1(z − r) + d0.

Now it suffices to show that d0 = 0. Evaluating at z = r gives p(r) = d0, but since p(r) = 0,
we conclude that d0 = 0.

In some sense, we have proven that the process of dividing out linear factors corresponding
to roots of a degree-n polynomial must terminate after at most n steps. In general, this style
of induction is quite useful, and we will rely on it for several of the key statements we prove
in our development of vector spaces at the end of the course.

We will now introduce techniques for combining inductive reasoning with proof by con-
tradiction. The first technique is known as ‘proof by infinite descent’, which we will illustrate
by proving a special case of Fermat’s Last Theorem. The goal of the technique is to show
that given an object satisfying a certain condition (e.g. a nontrivial solution to a Diophantine
equation), we can construct a strictly ‘smaller’ one; we then use “inductive” ideas to create
a contradiction!

We need a result about primitive Pythagorean triples, which we state without proof:

Lemma 6.5. Let (a, b, c) be a primitive Pythagorean triple (i.e. a2 + b2 = c2 and a, b, and c
are pairwise coprime positive integers). Then there exist coprime positive integers p and q
such that (possibly after relabeling a and b) c = p2 + q2, b = 2pq, and a = p2 − q2.

The slickest proof of the lemma uses geometry; see the Further Reading section 6.4 for
more information.

We will also use facts involving coprimality rather flexibly to avoid distracting from
the rather complicated argument at hand. We now state the special case of Fermat’s Last
Theorem:

Proposition 6.6 (Fermat). The equation x4 + y4 = z2 has no integer solutions (x, y, z)
satisfying xyz 6= 0.
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Note that although Fermat’s Last Theorem for exponent 4 concerns solutions of x4+y4 =
z4, here we prove something stronger : not even x4 + y4 = z2 has a solution in Z \ {0}. You
will see in the proof below that if we only worked with the more limited version using z4,
the algebra would break down. Success requires a suitably general inductive hypothesis!

Proof. Suppose for the purpose of contradiction that (x, y, z) is an integer solution to x4 +
y4 = z2 with xyz 6= 0. We may and do change signs if necessary so x, y, z ≥ 1. Notice that
if two of x, y, z share a prime factor p, so does the third, which can be seen by rearranging
the equation to isolate the third. We therefore may assume without loss of generality that
x, y, and z are pairwise coprime, perhaps after dividing by the greatest common divisor of
(x, y, z). This gives a primitive Pythagorean triple (x2)2 + (y2)2 = z2, so by Proposition
6.5, we can choose coprime positive integers p and q such that z2 = p2 + q2, x2 = 2pq, and
y2 = p2 − q2.

Rearranging the equation for y2 gives us another Pythagorean triple q2 + y2 = p2. This
triple is primitive because gcd(p, q) = 1, and if any two of q, y, p shared a prime factor,
then all three would by the argument above, which is impossible. Thus, there exist coprime
positive integers a and b such that p = a2 + b2, q = 2ab, and y = a2 − b2. Notice that a > 1,
for a2 − b2 > 0 implies that a > b, and b ≥ 1.

Returning to our equation for x2, we have that

x2 = 2pq = 4ab(a2 + b2).

Since a and b are coprime, it follows that ab and a2 + b2 are coprime as well. Since
x2 = 4ab(a2 + b2), any prime factor in the unique prime factorization of ab(a2 + b2) must be
present an even number of times. Since ab and a2 + b2 have no prime factors in common,
this ensures that the positive integers ab and a2 + b2 are both perfect squares. But with ab
a perfect square and a and b coprime and positive, a and b are themselves perfect squares.

Let P be the (positive integer) square root of a2 + b2, A be the (positive integer) square
root of a, and B be the (positive integer) square root of b. We necessarily have P 2 = A4+B4,
so (A,B, P ) forms another nontrivial solution to our original equation! Moreover, since a > 1,
P 2 = a2 + b2 < a4 + b4 = z2, so P < Z and our new solution is strictly ‘smaller’ than our
old one.

Inductively via this process, we can generate as many new solutions as we want, each
smaller than the previous. However, there cannot be more such steps than the initial value
of z, for each new solution’s third entry is at least 1 smaller than the previous solution’s
third entry. We have thus achieved a contradiction and conclude that there are no integer
solutions (x, y, z) to x4 + y4 = z2 satisfying xyz 6= 0.

We now see why the method is called the method of infinite descent. We showed that
we can choose smaller and smaller positive integer solutions ad infinitum if some solution
existed, which is certainly absurd, so there is no such solution. This idea is one of Fermat’s
most fruitful discoveries, and it has developed into a powerful technique in modern number
theory.

We will now conclude this section by finally proving the fundamental theorem of arith-
metic. The strategy is known as ‘contradicting a minimal counterexample’, or occasionally
the ‘minimal criminal method’ for short. We will proceed as follows: Suppose a property P
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(e.g. uniqueness of prime factorizations) does not hold for all natural numbers. Then the set
S ⊆ N on which P does not hold is a nonempty subset of N, so it contains a least element n
(our ‘minimal criminal’).1 We will then use the minimality of n to achieve a contradiction
to the failure of P and conclude that P holds for all n ∈ N.

We begin with the following lemma:

Lemma 6.7. If p is a prime factor of n ∈ N, then n has a prime factorization p1 · · · pk where
p equals one of the pi.

Proof. Suppose p is a prime factor of some n ∈ N. If n is prime then p = n, so p is a prime
factorization of n containing p. Otherwise, n = pd for some natural number d satisfying
1 < d < n. By Proposition 6.3, d has a prime factorization p1 · · · pk, so p · p1 · · · pk is a prime
factorization of n containing p.

Theorem 6.8 (Fundamental Theorem of Arithmetic). If n > 1 is a natural number, n has
a unique prime factorization up to rearrangement of the factors.

Proof. Having already proven existence of prime factorizations in Proposition 6.3, it remains
to prove uniqueness. Suppose for the purpose of contradiction that the claim is not true,
and let m be the smallest natural number greater than 1 having more than one prime
factorization. Let p1 · · · pk and q1 · · · q` be prime factorizations of m that are not merely
rearrangements of each other. Note that k > 1 and ` > 1 since prime numbers necessarily
have unique prime factorizations (of length 1) by the definition of primality.

We first claim that none of the pi can equal any of the qj, which we prove by contradiction.
Suppose not, and without loss of generality (since we can rearrange the pi and qj), we may
suppose p1 = q1. Then p2 · · · pk and q2 · · · q` are distinct (i.e. not differing by rearrangements
alone) prime factorizations of m/p1 < m, contradicting the minimality of m. Thus, the pi
and the qj do not have any elements in common, as claimed.

Now rearrange factors so that p1 ≤ pi for all i and q1 ≤ qj for all j. Then p21 ≤ m
and q21 ≤ m since k, ` ≥ 2 and p1 ≤ p2, q1 ≤ q2. Because p1 6= q1, it follows that p1q1 <
max{p1, q1}2 ≤ m.

Let n = m− p1q1, so 0 < n < m. We can do a bit better than that lower bound:2

n = m− p1q1 ≥ max{p1, q1}2 − p1q1 = |p1 − q1|max{p1, q1} ≥ 1 · 2 = 2.

This gives 1 < n < m, so by the inductive assumption n has a unique prime factorization.
Next, note that since p1 divides both m and p1q1, we have that p1 divides m− p1q1 = n;

likewise, q1 | n. Thus, by Lemma 6.7, n must have a prime factorization containing p1 and a
prime factorization containing q1. But n has a unique prime factorization by the inductive
hypothesis, so p1 and q1 must appear in the same prime factorization of n. We therefore
have p1q1 | n. (This is the key step of the entire argument.) Consequently, p1q1 divides
n + p1q1 = m. Dividing through by p1, we see that q1 | (m/p1). Since 1 < m/p1 < m (recall

1The existence of such an n is known as the well-ordering principle; this is logically equivalent to mathe-
matical induction in a suitable sense we will not discuss here. More information is available in the Further
Reading section 6.4.

2Here we use the equality max{x, y}2 − xy = |x− y|max{x, y} for all x, y ∈ R, which can be checked by
noting that the assertion is insensitive to swapping x and y, so we can assume x ≥ y and evaluate.
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Figure 1: Image of T2 and a small trapezoid.

k ≥ 2), by the minimality of m the prime factorization p2 · · · pk of m/p1 is unique, but q1
does not appear here. This is a contradiction, so m cannot exist. We conclude that if n > 1
is a natural number, n has a unique prime factorization.

We can also view this proof as a network of implications. Let Pn be the statement ‘the
prime factorization of n is unique’ for each n ≥ 2. We then prove

P2 and P3 and . . . and Pm−1 =⇒ Pm

by contradiction.
These examples hint at the flexibility of mathematical induction, but they still leave

many applications of induction unexplored. Many proofs of key theorems in all fields of
mathematics use induction in some way, so it is in general a good tool to keep in mind
regardless of the subject matter at hand.

6.3 Exercises

1. Consider the setting of Proposition 6.1, in which we cut a circular cake (perhaps oddly
and unequally) into pieces with n straight-line cuts. Suppose you have two flavors of
frosting. Prove that you can frost each piece of cake with one of the two flavors such
that no two adjacent pieces have the same flavor of frosting. (We define pieces to be
adjacent if they share an edge, but not if they just share a vertex.)

2. An equilateral triangle can be cut into 4n smaller equilateral triangles by repeatedly
cutting each triangle into 4 congruent pieces as in a Triforce (see Figure 1). Let Tn

be the trapezoid constructed performing this operation and removing one of the small
triangles in the corner of the original. We define a ‘small trapezoid’ to be the trapezoid
formed by placing 3 small triangles side by side pointing in alternating directions. Prove
that Tn can be constructed as a tessellation3 of small trapezoids.

3. In Proposition 6.2, we proved that the number of subcollections with k items of a
collection with n items is given by

(
n
k

)
. Give an interpretation of this result without

3A tessellation is a tiling of the plane with shapes that do not overlap or leave gaps.
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another induction that explains why the coefficient of xkyn−k in (x + y)n is also given
by
(
n
k

)
. This proves the Binomial Theorem:

(x + y)n =
n∑

k=0

(
n

k

)
xkyn−k.

4. In this problem, you will generalize the binomial theorem to the multinomial theorem.

(a) Identify and prove via mathematical induction an analogue to the binomial theo-
rem for expanding powers of trinomials (x+y+z)n. (Hint: It may help to think of
the binomial theorem as (x+ y)n =

∑
i+j=n

(
n
i,j

)
xiyj, where

(
n
i,j

)
means n!/(i!j!).)

(b) Identify and prove via mathematical induction a formula for expanding powers of
multinomials (x1 + . . . + xm)n for any m ≥ 2.

5. Let f1, . . . , fn be differentiable functions on R. Recall the product rule, which states
for differentiable functions g1 and g2 that (g1g2)

′ = g′1g2 + g1g
′
2. Conjecture a formula

for
dk

dxk

[
n∏

i=1

fi

]
by considering small n, and prove it via induction.

6. Let S be a finite set. Prove in two ways that the number of subsets of S with even
cardinality equals the number of subsets of S with odd cardinality, first by constructing
a bijection between the collections of even and odd subsets of S, then by using the
binomial theorem.

7. Use the binomial theorem to give a more efficient proof of Corollary 5.6.

8. Prove that for all n ≥ 6, any square can be cut into n (not necessarily congruent)
smaller squares. (Hint: Construct as your base case a division of a large square into
2n smaller squares for any n ≥ 2.)

9. Prove that for all m,n ∈ N that Rm and Rn have the same cardinality by describing
a bijection between them. (Hint: Use the Peano curve from the previous section’s
exercise 8 to start with a bijection between R and R2.)

6.4 Further Reading

“Mathematical Induction:
variants and subtleties”,
Amites Sarkar

A guide to many of the variants of induction introduced in
this section and more, along with a few challenging exercises

“Pythagorean Triples”,
Keith Conrad

A geometric proof of the formula for prim-
itive Pythagorean triples and more rele-
vant background information on the subject.
math.uconn.edu/∼kconrad/blurbs/ugradnumthy/pythagtriple.pdf

Wikipedia entry for the
well-ordering principle

More information about the well-ordering principle and
how it applies in disproving minimal counterexamples.
en.wikipedia.org/wiki/Well-ordering principle
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