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8 Choosing Strategies

8.1 Background

The technical aspects of last section focused on what not to do when coming up with a
proof; by contrast, this section will focus on how to come up with good arguments. Of
course, as with writing, the only way to improve is to practice solving problems and reading
other people’s work. We have developed a number of different strategies for writing proofs,
but a typical math problem will not fall naturally within a single one of the techniques we
have introduced. Frequently, problems require complex, multi-step arguments that employ
several different techniques. In this section, we will focus on breaking down difficult problems
into manageable pieces, then choosing the appropriate mathematical tools for finishing each
piece. We will also discuss how the conceptual insight provided by good proofs enables us
to generalize familiar intuition to new settings, developing certain ideas like ‘projection’ and
‘angle’ to situations far beyond R2 and Rn where one might not expect geometric intuition
to be relevant.

8.2 Examples

We will begin this section with a discussion of angles between vectors. Most of the geometric
questions we have about vectors can be answered in terms of lengths of vectors and angles
formed between pairs of vectors. In R2, these notions are easy to define in a way that matches
our intuition for ‘length’ and ‘angle’.

From the Pythagorean Theorem, we know that we can describe the length of a vector
v = (v1, v2) ∈ R2 by

‖v‖ =
√
v21 + v22 =

√
v · v.

Using the law of cosines, we can also describe angles between nonzero vectors. Choose
u = (u1, u2) and v = (v1, v2) in R2, and let θ be the non-reflex (i.e. less than 180 degrees)
angle between them, so 0 ≤ θ ≤ π. Then by the Law of Cosines and properties of the dot
product,

cos(θ) =
‖u‖2 + ‖v‖2 − ‖u+ v‖2

2‖u‖‖v‖
=
u · u+ v · v − (u+ v) · (u+ v)

2‖u‖‖v‖
=

u · v
‖u‖‖v‖

.

In R2, it is in some sense easy to measure the angle between two nonzero vectors because
of the existence of polar coordinates as follows. For two nonzero vectors u and v, we can
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write u = (ru, θu) and v = (rv, θv) with ru, rv > 0 and θu, θv ∈ [0, 2π) uniquely. We then
have the angle between them given by

θ = min{|θu − θv|, 2π − |θu − θv|}.

In other words, we can define angles between nonzero vectors in terms of the absolute angles
the vectors make with the positive x-axis, which themselves are defined by inverse trigono-
metric functions of the vectors’ Cartesian coordinates.

In Rn for n > 2, the picture is less clear, for we do not have polar coordinates we can
use to assign to any nonzero vector an ‘absolute’ angles with respect to some fixed half-line.
But perhaps we can adapt the algebraic formulas for length and angle in R2, namely

‖v‖ =
√
v · v, cos(θ) = u · v/(‖u‖‖v‖),

to define angles between nonzero vectors in Rn! If we can do this, we can adapt much
of our geometric intuition for vectors in the plane to try to say things about vectors in
n-dimensional space.

Definition 8.1. For nonzero vectors u, v ∈ Rn, we define the angle between them to be the
unique θuv ∈ [0, π] satisfying

cos(θuv) =
u · v
‖u‖‖v‖

.

But there is one problem: in order to define θuv in this way, we need to be sure that the
right side lies in the interval [−1, 1], so it is the cosine of some (unique) θ ∈ [0, π]. In other
words, we need to prove:

Proposition 8.2. For u, v ∈ Rn, |u · v| ≤ ‖u‖‖v‖.

Idea. It is useful to split into two cases: u, v are linearly independent and u, v are linearly
dependent. The first case should follow quickly because if v 6= 0 then there is a concrete
relationship u = λv for some λ ∈ R. In the second case, we can restrict the problem
to span(u, v), which is a 2-dimensional subspace of Rn on which we can try to apply our
intuition from the Euclidean plane!

Proof attempt. First, suppose u and v are linearly dependent. In the case that u or v is 0,
the desired inequality becomes 0 ≤ 0, which is true. Thus, we reduce to the case u, v 6= 0,
so u = λv for some λ ∈ R. Then

|u · v| = |λv · v| = |λ|‖v‖2 = ‖λv‖‖v‖ = ‖u‖‖v‖,

so the inequality holds (and is actually an equality).
Now suppose u and v are linearly independent, so span(u, v) is a 2-dimensional subspace

of Rn, which is a plane. Let Π = span(u, v). If there is an orthonormal (in Rn) basis (i.e.
a basis of orthogonal unit vectors) {e1, e2} of Π then in coordinates relative to such a basis
the dot product (and so length) come out exactly as in Euclidean geometry:

(ae1 + be2) · (a′e1 + b′e2) = aa′e1 · e1 + (ab′ + a′b)e1 · e2 + bb′e2 · e2 = aa′ + bb′.

We have then reduced to the known 2-dimensional case!
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Our above attempt did not actually finish the job: to reduce to the 2-dimensional case,
we need to find an orthonormal basis for Π. Why should one exist for such general Π?
Especially for n > 3, the existence of such a basis is not obvious.

However, our attempt gave us two crucial insights: we proved equality (and therefore
also the inequality) in the case where u and v are linearly dependent, and we learned that if
we want to reduce to a 2-dimensional picture, we just need to find in Π something like the
‘standard basis’ for R2, to make Π with the dot product from Rn look like R2 with its usual
dot product. We can combine these two findings to develop a new approach:

Idea. We already finished the case where u and v are linearly dependent, so we now assume
u and v are linearly independent, and in particular both are nonzero. We will try to break
u into components along v and orthogonal to v under the dot product in Rn. It will be the
orthogonal component that is responsible for the inequality, since the parallel component
gave equality in the linearly dependent case.

Proof. In 2 dimensions, the projection formula for the component of u along v 6= 0 is given
by

projv(u) =
u · v
v · v

v. (1)

We may hope that this formula extended to Rn as a definition satisfies the properties we
know in R2, such as the fact that u−projv(u) and v are orthogonal. Indeed, taking equation
(1) as the definition of the left side, we compute

(u− projv(u)) · v = u · v − projv(u) · v = u · v − (u · v)(v · v)

v · v
= u · v − u · v
= 0.

We now have the tools we need to finish in two ways.
One way is to observe that w := u − projv(u) is nonzero (since projv(u) ∈ span(v) by

definition yet u /∈ span(v) by the linear independence of u and v) and orthogonal to v by
the calculation above. Thus, {w/‖w‖, v/‖v‖} is orthonormal in the 2-dimensional plane
Π, hence an orthonormal basis of Π. This allows us to identify Π with R2 respecting dot
products,1 so we are done.

Alternatively, let z = projv(u) (and note z 6= u by the above argument that w 6= 0), so
(u− z) · v = 0 and u− z 6= 0. We then have via the definition of z that

0 < ‖u− z‖2 =
∥∥∥u− u · v

v · v
v
∥∥∥2 = u · u− 2

(u · v)2

v · v
+

(u · v)2(v · v)

v · v

= ‖u‖2 − 2
(u · v)2

v · v
+

(u · v)2(v · v)

v · v

= ‖u‖2 − (u · v)2

v · v
1In mathematics, we say an identification or map between objects ‘respects’ a property if the property is

unchanged by the map.
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= ‖u‖2 − |u · v|
2

‖v‖2
,

from which we conclude |(u · v)| < ‖u‖‖v‖ as desired.

We thus have two complete proofs of Proposition 8.2 (the second perhaps less intuitive),
plus a little bit more: the inequality is equality if and only if u and v are linearly dependent.
We therefore have the Cauchy-Schwarz Inequality:

Theorem 8.3. (Cauchy-Schwarz Inequality in Rn) For any vectors u, v ∈ Rn, |u · v| ≤
‖u‖‖v‖, with equality if and only if u and v are linearly dependent.

The first upshot of this result is that our definition of angles between vectors is well-
posed. From the equality case of the Cauchy-Schwarz Inequality (i.e. the case of linear
independence), we also can see that our definition of angle matches our geometric intuition:
for nonzero u and v, cos(θuv) equals +1 and −1 exactly when u and v are parallel or antipar-
allel (i.e. u = λv for λ > 0 or λ < 0, respectively). Moreover, cos(θuv) = 0 exactly when
u · v = 0 in Rn, as expected.

Another upshot of our result comes into focus upon recognition that our proof never
required us to write u and v in terms of coordinates in Rn. All we needed was certain
abstract properties of Rn and the dot product: a vector space over R (a concept to be
defined fully in the next section) with “length” given by a “dot product”.2 In fact, we only
used the bilinearity,3 symmetry, and nonnegativity properties of the dot product on Rn in
our proof (e.g. v · v ≥ 0 for all v, with equality if and only if v = 0). We may therefore
ask if there are any other mathematical structures on which we can define a natural ‘dot
product’ as well as what the significance of the resulting ‘Cauhcy-Schwarz Inequality’ is in
those settings. The following examples will all be vector spaces over R, i.e. sets equipped
with the operation of addition and scalar multiplication satisfying properties akin to Rn, on
which we can define a suitable ‘dot product’ to make sense of the Cauchy-Schwarz Inequality.

Example 8.4. Let X and Y be random variables (i.e. variables whose values are the result
of random processes) and let E[−] denote the expected value. One can check that the
assignment (X, Y ) 7→ E[XY ] is symmetric and bilinear and that E[X2] ≥ 0 with equality if
and only if X = 0. We can thus use the second proof of the Cauchy-Schwarz Inequality in
this setting to obtain

|E[XY ]|2 ≤ E[X2]E[Y 2].

More meaningfully, applying the inequality to the variables X − E[X] and Y − E[Y ] gives
the covariance inequality

(Cov(X, Y ))2 ≤ Var(X)Var(Y ),

which bounds the amount that two random variables can covary (i.e. vary interdependently)
by how much they each vary individually.

2This is hinting at the notion of an inner product space, a topic within functional analysis.
3A function f : V × V → R is called bilinear if it is linear in both arguments, so u 7→ f(u, v) is linear for

all v ∈ V and v 7→ f(u, v) is linear for every u ∈ V .
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Example 8.5. Let {an}n∈N and {bn}n∈N be sequences of real numbers which satisfy
∑

n a
2
n <

∞ and
∑

n b
2
n < ∞. It can be checked that the assignment ({an}, {bn}) 7→

∑
n anbn is

symmetric and bilinear, and clearly
∑

n a
2
n ≥ 0 with equality if and only if an = 0 for all n.

The Cauchy-Schwarz Inequality therefore applies in this setting as∣∣∣∣∣∑
n

anbn

∣∣∣∣∣
2

≤

(∑
n

a2n

)(∑
n

b2n

)
.

This is useful to prove that certain series are convergent.

Example 8.6. Let f : [0, 1] → R and g : [0, 1] → R be continuous functions. One can

check that the assignment (f, g) 7→
∫ 1

0
fg dx is symmetric and bilinear, and it is true that∫ 1

0
f 2 dx ≥ 0 with equality if and only if f = 0. This gives an application of the Cauchy-

Schwarz Inequality to vector spaces of functions, specifically(∫ 1

0

fg dx

)2

≤
(∫ 1

0

f 2 dx

)(∫ 1

0

g2 dx

)
.

The notion of treating functions as ‘points’ in a vector space (such as the set of all
polynomials, the set of all continuous functions on [0, 1], the set of all infinitely differentiable
functions on R, etc.) may seem alien at first, for functions do not match the mental picture
we have of vectors as arrows with a length and direction. However, we can expand our mental
picture, and with a little practice, treating function spaces as vector spaces is highly useful.
For instance, the set of solutions to a linear ordinary differential equation of order n is an
n-dimensional vector space (which we will explore in the next section). We can also adapt
the Gram-Schmidt process on Rn to apply to the space of polynomials with degree less than
n equipped with the ‘dot product’ (f, g) 7→

∫ 1

0
f(x)g(x) dx to construct sets of ‘orthonormal

polynomials’ which are useful in solving differential equations and in physics. (See Exercise
1b.)

This is the value of appropriate generalization in mathematics: we start with a mental
picture and use it to prove something specific, but when we step back and look at the essen-
tial properties of concepts used in the proof, we sometimes find them in another structure
that initially may seem quite different! Ultimately, we could recast this entire preceding
discussion in the language of inner product spaces (i.e. vector spaces over R with a suitable
‘dot product’), the broad setting in which the Cauchy-Schwarz Inequality holds.

We can also leverage our geometric intuition for vectors in Rn in these new (sometimes
‘infinite-dimensional’ !) settings. Focusing specifically on Example 8.6, we may be curious if
we can find an infinite ‘orthonormal basis’ {en}n∈Z for the space of continuous functions on
[0, 1] and talk about ‘orthogonally projecting’ functions onto the elements of this basis. It
turns out (after a bit of work) that the family of functions

{1, {
√

2 sin(2πkx)}k∈N, {
√

2 cos(2π`x)}`∈N}

does the trick, and the coefficients given by projecting a function f onto each of these basis
vectors have important physical and mathematical significance. These are the beginnings of
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the topic of Fourier analysis. The ‘Fourier coefficients’ of a function f : [0, 1]→ R given by

cn =
∫ 1

0
fe2πinx dx are helpful to solve certain partial differential equations and to study f

itself. And while this formula for a ‘projection’ looks different from the orthogonal projection
formula onto a line in Rn, the appropriate notion of ‘dot product’ makes the two formulas
instances of the same concept!

The process of generalization is central to studying mathematics, and it is both useful and
rewarding to discover a broad setting that isolates the essential properties of a mathematical
structure.

8.3 Exercises

1. This problem will consider what the Gram-Schmidt process looks like for vector spaces
of functions. On Rn, the Gram-Schmidt process takes a list of k ≤ n linearly indepen-
dent vectors {v1, . . . , vk} and returns a list of k orthogonal vectors {e1, . . . , ek} such
that span(v1, . . . , vk) = span(e1, . . . , ek) via the following procedure:

Set e1 = v1. We will recursively define ej for j > 1 by subtracting off the ‘par-
allel component’ of vj which lies in the subspace span(e1, . . . , ej−1) to get a vector
ej orthogonal to each element of {e1, . . . , ej−1}. Precisely, for 1 < j ≤ k, define
ej = vj −

∑
i<j projei(vj). Afterwards, we can divide each ei by its length if we want

to get an orthonormal set.

As an example, consider the vectors (1, 1, 0), (0, 2, 1), (3, 1, 2) ∈ R3. We begin with
v1 = (1, 1, 0) and set e1 = v1 = (1, 1, 0). Since v2 = (0, 2, 1), we have

e2 = v2 − proje1(v2) = (0, 2, 1)− (1, 1, 0) = (−1, 1, 1).

Lastly, we have v3 = (3, 1, 2), so

e3 = v3 − proje1(v3)− proje2(v3) = (3, 1, 2)− (2, 2, 0)− (0, 0, 0) = (1,−1, 2).

(a) What basis does the Gram-Schmidt process give for R3 given the inputs

{(7, 0, 24), (1, 0, 1), (3, 4, 5)}?

(b) Using the notion of ‘dot product’ given in Example 8.6, what orthonormal set does
the Gram-Schmidt process return given the inputs {1, x, x2, x3}? The resulting set
(up to rescaling factors) is the first few terms of what are known as the Legendre
polynomials, which have applications in math and physics.

2. Let {e1, . . . , ek} be a sequence of vectors in Rn given by performing the Gram-Schmidt
procedure on linearly independent vectors {v1, . . . , vk}. Prove that the ei are nonzero
and orthogonal: ei · ej = 0 if and only if i 6= j. (Hint: Induct on k.)

3. Let {e1, . . . , ek} be a sequence of vectors in Rn given by performing the Gram-Schmidt
procedure to linearly independent vectors {v1, . . . , vk}. Prove that

span(e1, . . . , ek) = span(v1, . . . , vk).

(Hint: Induct on k.)
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Figure 1: Illustration of the triangle inequality, which states that the length of a sum of
vectors is never greater than the sum of their lengths.

4. Use the Cauchy-Schwarz Inequality for Rn to prove the ‘triangle inequality’ for Rn,
which states that ‖u+ v‖ ≤ ‖u‖+ ‖v‖ for all u, v ∈ Rn, with equality if and only if u
is a nonnegative scalar multiple of v. (See Figure 1.)

5. Use the Cauchy-Schwarz Inequality for continuous functions from [0, 1] to R and the
previous exercise to formulate and prove an analog of triangle inequality for such
functions. What does this say in terms of definite integrals?

6. Read another proof of the Cauchy-Schwarz Inequality online. In what setting does the
proof apply? What approach does the proof take? Compare and contrast with the
proof given in this section.

7. Prove the Pythagorean Theorem for Rn, which states for u, v ∈ Rn that if u · v = 0
then ‖u+ v‖2 = ‖u‖2 +‖v‖2. Observe that the proof uses the definition ‖x‖2 = x ·x =
x21 + . . .+x2n, which seems to assume exactly the Pythagorean Theorem (at least when
n = 2)! Reflect: in your opinion, is the Pythagorean Theorem still a theorem within
the language of dot products, or a definition? What logical status does it hold?

8.4 Further Reading

“Various Proofs of the
Cauchy-Schwarz Inequal-
ity”, Hui-Hua Wu and
Shanhe Wu

More proofs of the Cauchy-Schwarz Inequality framed
in the setting of Rn. It is worth noting which proofs
use techniques specific to Rn and which can be ex-
tended to more general vector spaces with ‘dot products’.
rgmia.org/papers/v12e/Cauchy-Schwarzinequality.pdf

“Greek Versus Babylonian
Mathematics”, Richard
Feynman

In this short video (10:20), physicist Richard Feynman
talks about the relationship between physics and math
as well as the differences between what is axiomatic
and what is worthy to prove from different perspectives.
youtube.com/watch?v=YaUlqXRPMmY
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