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9 Vector Spaces I

9.1 Background

In the previous section, we looked at how a proof motivated by intuition in Rn actually
applied to any vector space equipped with a suitable ‘dot product’. Remarkably, we were
able to extend a result that a priori seems dependent on the geometry of Rn to vector spaces
that do not have any evident sense of ‘geometry’. In particular, we saw the significance of
the Cauchy-Schwarz Inequality in some vector spaces that do not have ‘standard bases’.

That Rn has a ‘standard basis’ is convenient, for we can prove many theorems about
Rn by writing out matrix equations. But those theorems rarely require the standard basis
beyond computations. Additionally, many important vector spaces have no preferred basis,
so we want a way to treat vector spaces without excessive reliance on solving systems of
equations or using the notion of a ‘standard basis’.

Here is the definition of a vector space over R:

Definition 9.1. A vector space V is a set equipped with the operations of ‘addition’ and
‘scalar multiplication by real numbers’ such that

• Addition is associative and commutative (i.e. v1 + (v2 + v3) = (v1 + v2) + v3 and
v1 + v2 = v2 + v1).

• There exists an element ~0 ∈ V such that v +~0 = v for all v ∈ V .

• For all v ∈ V there exists −v ∈ V such that v + (−v) = ~0.

• For all a, b ∈ R and all v ∈ V , a(bv) = (ab)v.

• For all v ∈ V , 1v = v.

• Scalar multiplication distributes over addition in V (i.e. a(v1 + v2) = av1 + av2).

• Scalar multiplication distributes over addition in R (i.e. (a1 + a2)v = a1v + a2v).

It is convenient to think of the required properties of vector space ‘arithmetic’ as exactly
what one might expect based on vector addition/scalar multiplication in Rn.

Elements of such V are called vectors. Note that V does not necessarily have a notion
of ‘length’ and ‘direction’, so the saying that “a vector is an object with a magnitude and a
direction” is incorrect. Instead, vectors are simply elements of vector spaces, and ‘length’ and
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‘direction’ are concepts we define on top of vector space structure. The important feature
of a vector space is its linear structure, and any other geometric ideas we wish to consider in
the context of a vector space require additional data defined independently from the linear
structure.

Observe that the definition does not require V to have a ‘preferred basis’, or even a basis
at all. In particular, consider the following examples of vector spaces.

Example 9.2. Consider the second-order differential equation y′′+ y = 0. Observe that for
any solutions y1 and y2, y1 + y2 is also a solution since

(y1 + y2)
′′ + (y1 + y2) = (y′′1 + y1) + (y′′2 + y2) = 0 + 0 = 0.

Additionally, for any solution y and any c ∈ R, cy is also a solution because

(cy)′′ + (cy) = c(y′′ + y) = c · 0 = 0.

Lastly, y = 0 is a solution, so the set of solutions to y′′ + y = 0 is a vector space! Moreover,
it is known that any solution to this differential equation has the form a cos(x) + b sin(x) for
some a, b ∈ R.

Example 9.3. Consider a homogeneous third-order linear differential equation with highest
order coefficient 1:

f ′′′ + P (x)f ′′ + Q(x)f ′ + R(x)f = 0.

Solutions to this differential equation are functions f(x) which satisfy the differential equa-
tion. Because (f1+f2)

′ = f ′1+f ′2 (and likewise for f ′′ and f ′′′) for any differentiable functions,
if f1 and f2 are solutions of the differential equation, so is f1 + f2:

(f1 + f2)
′′′ + P (x)(f1 + f2)

′′ + Q(x)(f1 + f2)
′ + R(x)(f1 + f2)

= (f ′′′1 + P (x)f ′′1 + Q(x)f ′1 + R(x)f1) + (f ′′′2 + P (x)f ′′2 + Q(x)f ′2 + R(x)f2)

= 0 + 0 = 0.

Additionally, since (af)′ = a(f ′) for all a ∈ R and all differentiable functions f (and likewise
for f ′′ and f ′′′), if f is a solution and a ∈ R, then af is also a solution:

(af)′′′ + P (x)(af)′′ + Q(x)(af)′ + R(x)(af)

= a(f ′′′ + P (x)f ′′ + Q(x)f ′ + R(x)f)

= a · 0 = 0.

Lastly, the zero function is a solution. Thus, the set of solutions to this differential equation
is a vector space! However, it is not clear what a basis of this space would look like, and
even in cases where bases can be found, there is not generally a choice of a “standard” basis.
In fact, it is not clear that there are even nonzero solutions to this ODE, but we do not need
to know how many solutions there are or any particular solutions to verify that the solution
set is indeed a vector space.

Example 9.4. Consider the set of continuous functions f : R → R. Because sums and
scalar multiples of continuous functions are continuous, this set forms a vector space. Again,
it is unclear how to choose a basis for this space, and even if it is possible, there might not
be a ‘best choice’.
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In light of these ideas, we want to develop the theory of vector spaces in such a way that
we do not rely on explicit formulas in Rn, but instead spaces with operations having the
same properties as in Rn. In particular, we will focus on ‘finite dimensional’ vector spaces.
We will look at questions that can be asked for general vector spaces and then understand
what they mean in specific cases, much as we did with the Cauchy-Schwarz Inequality.

9.2 Examples

We begin by recalling a few notions from Math 51 which will be relevant in this section. Let
V be a vector space.

Definition 9.5. A linear combination of vectors {v1, . . . , vn} ⊂ V is an element v ∈ V given
by v = c1v1 + c2v2 + . . . + cnvn for some ci ∈ R.

Definition 9.6. The span of a set of vectors {v1, . . . , vn} is the set of all linear combinations
of the vi. In other words, it is the set of all v ∈ V that can be written as c1v1+c2v2+. . .+cnvn
for some ci ∈ R.

Definition 9.7. A set of vectors {v1, . . . , vn} is linearly independent if the only way to write
~0 as a linear combination of {v1, . . . , vn}, i.e. to write ~0 = c1v1 + . . .+ cnvn, is for ci to equal
0 for all i ∈ {1, . . . , n}.

We will begin by examining these concepts with some examples in R4—beyond the range
of visualization, but still in the familiar context of Euclidean space. We will then consider a
more abstract setting: the vector space of continuous functions f : [0, 1]→ R.

Example 9.8. Consider the vectors u = (1, 0,−2, 1), v = (1, 1, 0,−1), w = (3, 2,−2, 0). A
linear combination of these vectors is any vector of form au+ bv + cw, where a, b, c ∈ R, and
span(u, v, w) is the set of all vectors of form au + bv + cw.

We now will investigate whether or not {u, v, w} is a linearly independent set. Suppose
we have au + bv + cw = ~0 for some real constants a, b, c. For the second coordinate of
au+bv+cw to equal 0, we need b+2c = 0. Likewise, setting the third and fourth coordinates
of au + bv + cw to 0 gives the equations a + c = 0 and a− b = 0; these three equations have
the unique solution (a, b, c) = (0, 0, 0), so we conclude that {u, v, w} is a linearly independent
set (without even having to write out a fourth equation).

However, suppose we replace w with w′ = (3, 2,−2,−1). Repeating the above process
gives a system of four equations for three unknowns, which has the (not unique) nonzero
solution (a, b, c) = (1, 2,−1). In other words, we have ~0 = u + 2v − w′, so {u, v, w′} is not a
linearly independent set.

Example 9.9. Let V be the vector space of continuous functions f : [0, 1] → R. We claim
that the functions sin(x) and cos(x) are linearly independent in V .

This draws the important distinction between treating functions like sin(x) and cos(x)
as objects to be evaluated on an input variable and treating functions as objects in and
of themselves. From the former perspective, it may be tempting to find a nontrivial linear
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combination of sin(x0) and cos(x0) which comes out to 0 for some particular x0 ∈ [0, 1];1

however, we cannot choose a, b not both equal to 0 such that a sin(x) + b cos(x) is identically
the zero function. To see why, observe that sin(0) = 0 and cos(0) = 1, so for a sin(0)+b cos(0)
to equal 0, we need b = 0. Then for a sin(x) + 0 cos(x) to equal 0 at any x ∈ (0, 1], we need
a = 0. Thus, the only way for a sin(x) + b cos(x) to equal 0 for every x ∈ [0, 1] is to have
a = b = 0. From this, we conclude that sin(x) and cos(x), seen as vectors in the space of
continuous functions f : [0, 1]→ R, are linearly independent.

A piece of intuition for the definition of linear independence is that linearly independent
sets have no ‘redundant’ elements in the sense that none of the elements can be written as
a linear combination of the others:

Proposition 9.10. A set {v1, . . . , vn} is linearly independent if and only if for all i ∈
{1, . . . , n}, vi /∈ span(v1, . . . , vi−1, vi+1, . . . , vn).

Proof. We will prove this biconditional statement by proving that if {v1, . . . , vn} is linearly
dependent then there exists some i ∈ {1, . . . , n} such that vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vn),
then proving the converse of that statement.

Suppose {v1, . . . , vn} is a linearly dependent set, so we can choose a1, . . . , an not all equal
to 0 such that a1v1 + . . . + anvn = ~0. Without loss of generality (by relabeling indices), we
may and do suppose a1 6= 0. We then have a1v1 = −a2v2− . . .−anvn and can divide through
by a1 6= 0 to obtain

v1 = − 1

a1
(a2v2 + . . . + anvn) = −a2

a1
v2 − . . .− an

a1
vn,

thereby expressing v1 as a linear combination of the elements of {v2, . . . , vn}. Thus, v1 ∈
span(v2, . . . , vn), completing the first half of the proof.

Now suppose that for some i ∈ {1, . . . , n}, vi ∈ span(v1, . . . , vi−1, vi+1, . . . , vn), and
without loss of generality, let i = 1. We can then write v1 = c2v2 + . . . + cnvn for some
c2, . . . , cn ∈ R. Subtracting v1 from both sides gives

~0 = −v1 + c2v2 + . . . + cnvn = (−1)v1 + c2v2 + . . . + cnvn,

which is a linear combination of the elements of {v1, . . . , vn} having v1-coefficient −1 6=
−0 which adds up to ~0. Thus, the set {v1, . . . , vn} is linearly dependent, completing the
proof.

Linearly independent sets are helpful because every element of their spans can be written
uniquely as a linear combination of elements of the set:

Proposition 9.11. Suppose {v1, . . . , vn} is a linearly independent set. Then if

a1v1 + . . . + anvn = v = c1v1 + . . . + cnvn,

we have ai = ci for all i ∈ {1, . . . , n}.
1In fact, for any x0 ∈ R, sin(x0) and cos(x0) are linearly dependent elements of R. Because for all x0 ∈ R,

at least one of sin(x0) and cos(x0) is nonzero, we can choose a = cos(x0)/ sin(x0), b = −1 when sin(x0) 6= 0
and a = −1, b = sin(x0)/ cos(x0) when cos(x0) 6= 0 to obtain a cos(x0) = b sin(x0) = 0 with at least one of
a, b not equal to 0.
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Proof. By the definition of linear independence, ~0 can be represented uniquely as a linear
combination of the elements of {v1, . . . , vn} (i.e. the linear combination with all coefficients
0). We want to extend this to say that all vectors in span(v1, . . . , vn) are given by a unique
linear combination of the elements of {v1, . . . , vn}, which we will do by using the ‘linear’
structure of the space. Suppose there exist some real numbers a1, . . . , an, c1, . . . , cn such that

a1v1 + . . . + anvn = c1v1 + . . . + cnvn.

Subtracting c1v1 + . . . + cnvn from both sides gives

a1v1 + . . . + anvn − c1v1 . . .− cnvn = ~0,

and rearranging via the properties of vector space arithmetic gives

(a1 − c1)v1 + . . . + (an − cn)vn = ~0.

By the definition of linear independence, a1 − c1 = 0, . . . , an − cn = 0, so we conclude that
ai = ci for all i ∈ {1, . . . , n}.

We next want a procedure to take a linearly dependent set and remove the ‘redundant’
vectors to obtain a linearly independent list with the same span. To do so, we will show
that we can remove one ‘redundant’ vector from the set at a time without affecting the set’s
span, then induct on the process of removing ‘redundant’ vectors.

Lemma 9.12 (Linear Dependence Lemma). If S = {v1, . . . , vn} ⊂ V is a linearly dependent
set and v1 6= ~0, there exists j ∈ {2, . . . , n} such that

• vj ∈ span(v1, . . . , vj−1) and

• span(v1, . . . , vj−1, vj+1, . . . , vn) = span(v1, . . . , vn), i.e. removing vj from S does not
affect the span of S.

Intuitively, our ‘redundant’ vector is a vector that lies in the span of the previous vectors,
and removing it does not affect the span of the set.

Proof. Because the vi are linearly dependent, we can write ~0 = c1v1 + . . . + cnvn for some
ci not all equal to 0. Let j be the index of the largest nonzero ci, and note j > 1 since
otherwise a1v1 = 0 with a1 6= 0, which is impossible since v1 6= ~0. Because all of the
ci vanish for i > j, we have ~0 = c1v1 + . . . + cjvj, which we can rearrange to obtain
vj = (−1/cj)(c1v1 + . . . + cj−1vj−1). We have therefore expressed vj as a linear combination
of elements in the set {v1, . . . , vj−1}, so vj ∈ span(v1, . . . , vj−1).

We are left to prove that the span of {v1, . . . , vn} is unaffected if vj is removed. To show
this, we must show that an arbitrary linear combination of the vi can be rewritten without
a vj term. Indeed, given v = a1v1 + . . . + ajvj + . . . + anvn, we can substitute our above
equation for vj, giving

v = a1v1 + . . . + aj−1vj−1 −
aj
cj

(c1v1 + . . . + cj−1vj−1) + aj+1vj+1 + . . . + anvn
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=

(
a1 −

aj
cj
c1

)
+ . . . +

(
aj−1 −

aj
cj
cj−1

)
vj−1 + aj+1vj+1 + . . . + anvn.

We have written v as a linear combination of the elements of {v1, . . . , vj−1, vj+1, . . . vn}, so
span(v1, . . . , vj−1, vj+1, . . . , vn) = span(v1, . . . , vn), concluding the proof.

Proposition 9.13. Given any finite set S = {v1, . . . , vn} ⊂ V with v1 6= ~0, there exists a
linearly independent subset T = {vi1 , . . . , vik} ⊂ S with the same span.

Proof. We will induct on the size of S using Lemma 9.12. As the base case, observe that any
set with one vector (which is nonzero) is linearly independent, so we are done. Suppose that
the statement in the proposition is true for sets of size n − 1 with n − 1 ≥ 1; we will show
that it is also true for a set S of size n. If S is linearly independent, we are done. Otherwise
by Lemma 9.12 we can choose a vector vj ∈ S such that S \ {vj} has the same span as S.
Then by the inductive hypothesis, S \{vj} admits a linearly independent subset T such that
span(T ) = span(S \ {vj}) = span(S).

We have now proven that given a finite set of vectors, we can choose a linearly indepen-
dent subset with the same span. The approach we took is rather theoretical, avoiding row
reduction in Rn to gain conceptual efficiency at the cost of being non-constructive. However,
if you think carefully about what you do when you perform row reduction operations, you
will realize that this method is the same method in disguise.

Next, we will restrict our attention to ‘finite dimensional’ vector spaces and develop an
understanding of the concept of dimension. First, we must define our new setting:

Definition 9.14. A nonzero vector space V is finitely generated if it admits a finite spanning
set.

Some familiar spaces are finitely generated, such as Rn and the set of solutions to the
class of third-order differential equations in Example 9.3. This is because Rn can be written
as the span of the n vectors ei, and the solution space to the aforementioned differential
equation is the span of three functions due to a rather serious theorem on linear ordinary
differential equations:

Theorem 9.15. The space of solutions to an ordinary differential equation of form

f (n) +
n∑

i=0

Pi(x)f (i),

where n ≥ 1 and Pi(x) is an infinitely differentiable function for i ∈ {0, . . . , n − 1}, is
a finitely generated vector space. More precisely, for any scalars c0, . . . , cn−1 ∈ R, there
is a unique function f which satisfies the differential equation and the ‘initial conditions’
f(0) = c0, f

′(0) = c1, . . . , f
(n−1)(0) = cn−1. If we let fi denote the unique solution satisfying

the initial conditions ci = 1, cj = 0 for j 6= i, then the set {f0, . . . , fn−1} is a spanning set
for the space of all solutions.
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Recall Example 9.2, where we introduced the differential equation y′′ + y = 0. In the
language of Theorem 9.15, we have f0 = cos(x), f1 = sin(x), and {cos(x), sin(x)} is a
spanning set for the whole space of solutions.

Theorem 9.15 is often called an ‘existence/uniqueness’ theorem since it asserts that so-
lutions to a problem exist for any initial conditions and that specified initial conditions
determine a solution uniquely. The n = 2 case agrees with physical intuition, as it is akin to
a statement that the trajectory of a particle subject to a given potential energy landscape
exists and is determined uniquely by the particle’s initial position and velocity.

However, the theorem does not give a formula for what solutions will be; it simply asserts
that they exist and in what sense they are unique. This may seem abstract, but consider
the similar level of abstraction in the intermediate value theorem for calculus, which asserts
that a continuous function f : [a, b] → R must take every value between f(a) and f(b) but
does not assert where.

We now recall the concept of a basis:

Definition 9.16. For a nonzero vector space V , a set B ⊂ V is a basis for V if B is a
linearly independent set and span(B) = V .

Beware that the existence of a basis of a finitely generated vector space must be proven!
However, we have already done the majority of the work to prove this.

Lemma 9.17. If V is a finitely generated vector space, V has a basis.

Proof. Let V be a nonzero finitely generated vector space, which by definition admits a finite
spanning set S = {v1, . . . , vn}. By Proposition 9.13, S admits a linearly independent subset
with the same span, i.e. a basis B ⊂ S.

We want a stronger understanding of dimension in finitely generated settings as the
‘number of basis vectors’. In Rn, this idea is discussed in Math 51 using the language of
coordinates. But in more flavorful vector spaces like the set of solutions to a linear ordinary
differential equation, ‘dimension’ gives us a new perspective.

We want to prove that the number of basis vectors, which we will refer to as the dimension
of a vector space V , is independent of any particular basis. That way, we can talk about
dimension in settings where there is no obvious choice of basis.

We need to show that for finitely generated vector spaces, all bases have the same size.
To do this, we will first show that any spanning set is longer than any basis, again using our
‘eliminating redundancy’ approach and Lemma 9.12. Then, we will be able to show that any
two bases must have the same size.

Proposition 9.18. Let V be a finite dimensional vector space, let {v1, . . . , vn} be a linearly
independent set, and let {u1, . . . , um} be a spanning set. Then m ≥ n.

Proof. We will inductively replace the ui with the vi to create new spanning sets, then show
that we run out of vi to add before we run out of ui to remove.

Observe that none of the vi equals ~0 since {v1, . . . , vn} is linearly independent. We claim
that since {u1, . . . , um} is a spanning set, {v1, u1, . . . , um} must be linearly dependent. This
holds because v1 = v1 and v1 = a1u1+. . .+amum for some a1, . . . , am since span(u1, . . . , um) =
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V , so a1u1+ . . .+amum+(−1)v1 = ~0. Thus, by Lemma 9.12, we can remove some uj without
affecting the span of the new set. Let T1 = {v1, u1, . . . , uj−1, uj+1, . . . , um}.

Repeating the process for 2 ≤ k ≤ n, we can define Tk from Tk−1 by adding vk to the
front of Tk−1 and subtracting a ‘redundant’ vector from Tk−1 by Lemma 9.12. We claim
that the vector we remove will never be one of the vi. This is because {v1, . . . , vn} is linearly
independent, so by Proposition 9.10, none of the vi is in the span of the earlier vj. However,
we require that the vector we remove from Tk−1 at each step is in the span of all previous
vectors in the collection, so in particular it cannot be one of the vi. Thus, at each step of
the process, we remove one of the ui from Tk−1. Accordingly, there must be at least as many
ui as there are vi, so m ≥ n.

Proposition 9.19. Any two bases have the same size.

Proof. Let B1 be a basis of size n and B2 be a basis of size m. Since B2 spans V and B1 is
linearly independent, by Proposition 9.18, n ≤ m. Reversing the roles of B1 and B2 since
each is both spanning and linearly independent, we also have m ≤ n. Thus, m = n, so any
two bases have the same size.

Observe how the above proof (and the previous results it depends on) do not rely on
Rn-specific methods like row reduction. This makes for a clean and general proof which
provides intuition for how all that is necessary to establish dimension is a finitely generated
vector space, regardless of whether or not it comes with a ‘preferred basis’.

We are now ready to define the main concept of this section: the dimension of a finitely
generated vector space. Proposition 9.19 then tells us that any basis of V (which necessarily
exists by Lemma 9.17) has the same size as any other basis of V , so we make the following
definition:

Definition 9.20. Let V be a finitely generated nonzero vector space. The dimension of V
is the common size of any basis of V .

We began with an intuitive criterion for finitely generated vector spaces: there should
exist some finite subset that is sufficient to describe all points in the vector space by linear
combinations. We then formalized this idea with the language of linear independence, al-
lowing us to prove several useful results: that nonzero, finitely generated vector spaces have
bases, and that all bases of a particular such vector space have the same size. This confirms a
lot of our intuition from Rn in a more broadly applicable setting, and we are left to examine
what ‘dimension’ means as defined independently from any preferred basis. We will do so
now to see how our new definition informs our intuition for a more general context than Rn.

Example 9.21. Let f ′′′+P (x)f ′′+Q(x)f ′+R(x)f = 0 be a linear third-order homogeneous
ordinary differential equation and V be the vector space of solutions. Then dim(V ) = 3,
and we need 3 initial conditions (e.g. f(0) = c1, f

′(0) = c2, f
′′(0) = c3) to specify a unique

solution.2

2Note that this is a serious theorem in ordinary differential equations, and that even though a three
dimensional vector space of solutions exists, there is no formula for what the solutions are in terms of P , Q,
and R.
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More generally, for infinitely differentiable functions Pi(x), the solution space to a linear
n-th order ordinary differential equation f (n) +

∑n−1
i=0 Pi(x)f (i)(x) = 0 is an n-dimensional

vector space, and n initial conditions are required to specify a unique solution.3

Example 9.22. The set Pn of real-coefficient polynomials of degree less than or equal to n
is an (n + 1)-dimensional vector space: a basis is {1, x, x2, . . . , xn}.4 However, the set P of
all real-coefficient polynomials is ‘infinite-dimensional’. To see this, observe that for given
any finite set {p1, . . . , pm}, there must be a finite maximum degree d of the pi. We can then
choose any degree-(d + 1) polynomial q, and q cannot be in span(p1, . . . , pm). Thus, P does
not admit a finite spanning set, so we say P is ‘infinite-dimensional’.

9.3 Exercises

1. Prove that if V is any vector space equipped with a ‘dot product’ and ‘length’ ‖v‖ =√
v · v, all vectors v, w ∈ V satisfy the parallelogram law (see Figure 1):

‖v + w‖2 + ‖v − w‖2 = 2‖v‖2 + 2‖w‖2.

2. For continuous functions f : [0, 1] → R, we can talk about ‘size’ in different ways.
This is helpful when breaking down functions into principal components, for instance
in terms of trigonometric functions as introduced in the last section. We can define
the size of a function to be its biggest deviation from 0:

‖f‖ = max{|f(x)| : x ∈ [0, 1]}.

We can also define the size of a function to depend on its integral:

‖f‖ =

∫ 1

0

|f(x)| dx.

Lastly, we can define the size of a function to depend on the integral of its square:

‖f‖ =

(∫ 1

0

f 2 dx

)1/2

,

similar to length in Rn by the intuition that integration is a continuous analog of
summation. Using the previous exercise, prove that two of these three definitions do
not arise from an inner product.

3. A subspace W of a vector space V is a subset of V which satisfies three properties:

• 0 ∈ W

3Again, this is a theorem which requires real work to prove, and there is no explicit formula for solutions
in general.

4Note that these functions are linearly independent as functions, even though they may take the same
values at particular points. This follows from the fact that a nonconstant polynomial of degree at most n,
i.e. a polynomial p(x) = c0 + c1x + . . . + cnx

n with cj 6= 0 for some j > 0, has at most n different roots, so
on a domain with more than n points (e.g. R), p(x) cannot be identically zero.
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Figure 1: An illustration of the parallelogram law, which states that the sum of the squared
lengths of the diagonals is twice the sum of the squared lengths of the sides.

• For all x, y ∈ W , x + y ∈ W .

• For all x ∈ W and all c ∈ R, cx ∈ W .

Prove whether or not the following sets are subspaces:

(a) The graph of the function y = x as a subset of R2

(b) The graph of the function y = x2 as a subset of R2

(c) The set of all polynomials of degree less than or equal to n as a subset of the
vector space of all polynomials

(d) The intersection W1 ∩W2 of two subspaces W1,W2 ⊂ V

(e) The union W1 ∪W2 of two subspaces W1,W2 ⊂ R3

4. In the language of Theorem 9.15, consider the solutions f0, . . . , fn−1 to an n-th order
homogeneous linear ordinary differential equation (i.e. the setting in which the theorem
applies).

(a) For n = 2, prove that f0 and f1 are linearly independent.

(b) Generalize the above statement to arbitrary n to prove that f0, . . . , fn−1 are lin-
early independent.

10



5. Prove whether the following real vector spaces are finite dimensional or not. If finite
dimensional, calculate the dimension.

(a) C
(b) The set of m× n matrices

(c) The set of functions f : [0, 1]→ R with vector space operations taken pointwise

(d) The set of functions f : {A,B,C} → R with vector space operations taken
pointwise

6. Prove by induction that a subspace of a finite dimensional vector space is finite di-
mensional by the following steps. Suppose that dim(V ) = n and W ⊂ V is a nonzero
subspace.

(a) Observe that for any linearly independent set S ⊂ W of size m, either span(S) =
W or there exists a vector w ∈ W such that w /∈ span(S). If w exists, prove that
the set S ∪ {w} is a linearly independent as a subset of V with m + 1 elements.

(b) Argue that the above process of adding vectors in W to S to build larger linearly
independent subsets of V must terminate after at most n steps.

7. Give an example of an ‘infinite-dimensional’ vector space V and a finite dimensional
subspace W ⊂ V .

8. Give another example of a finite dimensional vector space other than the ones in-
troduced in this section. What is its dimension (numerically), and what intuitive
significance does its dimension have? (Example: The vector space of solutions to
f ′′′ + P (x)f ′′ + Q(x)f ′ + R(x)f = 0 has dimension 3, which is the number of ini-
tial conditions needed to specify a unique solution.)

9.4 Further Reading

Linear Algebra Done Right
Chapter 2, Sheldon Axler

A more detailed overview of the concepts introduced in this
section available via SpringerLink to Stanford undergradu-
ates.

Ordinary Differential Equa-
tions, V.I. Arnold

An ordinary differential equations reference which contains
a proof of Theorem 9.15. The proof is quite advanced but
worthy of stopping to appreciate.
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