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Brief warning for the CS fans: In computer science classes, ‘mod’ is an operation
that takes in two inputs a and b and spits out the remainder of a after dividing by b. For
instance, in CS speak, 27%5 = 2 and 33%9 = 6. This may guide your intuition for what
we will soon call reducing a modulo b, but it is not a firm notion of modular arithmetic.
Among other things, it fails because a%n+ b%n is in general not equal to (a+ b)%n, so that
definition does not play nicely with arithmetic operations.

And on with the show: Several examples we have seen have involved working with
remainders of integers after dividing by some fixed integer n. For instance, we proved that
the sum of two perfect squares cannot leave remainder 3 when divided by 4, which we in turn
used to prove that the only integer solution to x2 + y2 = 3z2 is (x, y, z) = (0, 0, 0). Another
example arose in the exercise about the existence of sexy prime quintuplets, where we saw
an intuitive argument for why (5,11,17,23,29) should be the only one. Modular arithmetic
gives us a framework for handling these types of questions efficiently.

The essential idea is that if we only care about the remainders numbers leave after
dividing by n, any two numbers that leave the same remainder after dividing by n behave
the same under addition, subtraction, and multiplication; we don’t have to worry about the
bookkeeping. As an everyday example, when it is 11AM on Tuesday and our math 79SI
homework is due at 3PM, we know that we have 3 + 12 − 11 = 4 hours left to finish, not
3− 11 = −8. Implicitly, we add back in a multiple of 12 to bring the time interval back into
the sensible range. As a more mathematical motivating example, if we want to know what
remainder 4797 · 1963 will leave after dividing by 5, we can say that immediately that it will
be 1 without doing any multiplication beyond 2 · 3 = 6.

We will introduce modular arithmetic with a few exercises. You may use the following
result given by the long division algorithm:

Proposition. For any n ∈ N and any x ∈ Z, we can write x = qn + r uniquely for some
q ∈ Z and r ∈ {0, 1, . . . , n− 1}.
Definition. We define x and y to be congruent modulo n and write x ≡ y mod n if n | (x−y).

Definition. We define the residue class of x modulo n to be the set [x] = {y ∈ Z : x ≡ y
mod n}.

1. Intuitively, we want each residue class to consist of all the integers which leave a
particular remainder after dividing by n. First, we need to show that congruence
modulo n cuts Z up into disjoint classes in such a way that every integer belongs to
exactly one residue class. To avoid getting bogged down in set theory, we assert that
it suffices to prove that the following properties hold. Prove that ‘congruence modulo
n’ satisfies:
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(a) Reflexivity: x ≡ x mod n for all x ∈ Z.

(b) Symmetry: x ≡ y mod n if and only if y ≡ x mod n for all x, y ∈ Z.

(c) Transitivity: If x ≡ y mod n and y ≡ z mod n, then x ≡ z mod n.

You must use the definition of congruence modulo n to have a correct proof.

2. Now we have split Z up into disjoint residue classes [r], where we may treat [r] like a
general number of form qn + r. We want to be able to perform the usual arithmetic
operations on residue classes, which absorb the ‘bookkeeping’ of the non-remainder
part of each integer. We thus may want to define

[x] + [y] = [x + y], [x]− [y] = [x− y], [x][y] = [xy],

but there is a slight possible issue with these definitions. They each depend on choices
of x and y as representatives of their residue classes. We need to show that these
operations are well-defined in the sense that they do not depend on our choice of
x ∈ [x] or y ∈ [y]. To do this, let x ≡ a mod n and y ≡ b mod n, and prove:

(a) Addition is well-defined: x + y ≡ a + b mod n.

(b) Subtraction is well-defined: x− y ≡ a− b mod n.

(c) Multiplication is well-defined: xy ≡ ab mod n.

3. We now know that we can perform the usual arithmetic operations on residue classes
without worrying about our choice of representatives. It thus makes sense to choose the
easiest representative with which to work. Do the following computations as quickly
as possible, without any extraneous bookkeeping:

(a) [4][8] mod 5

(b) [1234] + [12345] mod 10

(c) [6913112352][14235913451] mod 50

(d) [32123]− [12321] mod 3

4. Let’s use modular arithmetic (and a little bit of mathematical induction which we’ll
introduce on the fly) to prove a Fermat’s little theorem, which states that for any prime
p and any a ∈ N, ap ≡ a mod p.

(a) Prove using the formula for binomial coefficients that p |
(
p
k

)
for k ∈ {1, 2, . . . , p−

1}. Thus,
(
p
k

)
≡ 0 mod p for all such k.

(b) Prove using the binomial theorem that for any a ∈ Z, (a + 1)p ≡ ap + 1 mod p.
Thus, if ap ≡ a mod p, we see that (a+1)p ≡ a+1 mod p. (This is our ‘inductive
step’, where we prove that if Fermat’s little theorem holds for a, it holds for a+ 1
too.)

(c) Observe that 1p ≡ 1 mod p. (This is known as our base case.) Explain intuitively
how this observation and the previous part of this problem allow you to conclude
the theorem. (This is called mathematical induction, which we will introduce
formally week 5.)
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5. In exercise 1.1.5, we looked at an argument that there could be no sexy prime quintuplet
that can be reinterpreted in terms of modular arithmetic. The argument had a flaw,
which is that it assumed that divisibility by 5 is sufficient to prove that a natural
number is composite (think about 5 itself), but the idea is almost correct. Formalize
that argument with modular arithmetic to prove that (5,11,17,23,29) is the only sexy
prime quintuplet.

6. Prove that for all a ∈ Z, exactly one of a, a + 2, a + 4 is a multiple of 3. Why isn’t it
also true that exactly one of a, a + 2, a + 4, a + 6 is a multiple of 4?

Congratulations! You now have a handle on modular arithmetic.
Bonus note for the CS fans: To tie this back to your intuition from CS, it may seem

like we have shown that if x%n = a%n and y%n = b%n, then (x + y)%n = (a + b)%n,
(x − y)%n = (a − b)%n, and (xy)%n = (ab)%n. But we’ve actually done better. It is not
true that (x + y)%n = x%n + y%n and so on, but we’ve shown that it is true that those
expressions are congruent modulo n. We have thus shown that you can reduce modulo n
before doing arithmetic, after doing arithmetic, or both, and your answer will be the same,
up to adding multiples of n. Thus, you never have to work with numbers larger than (n−1)2.
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